
JSS Journal of Statistical Software
December 2025, Volume 115, Issue 8. doi: 10.18637/jss.v115.i08

SMLE: An R Package for Joint Feature Screening in
Ultrahigh-Dimensional GLMs

Qianxiang Zang
University of Ottawa

Chen Xu
Pengcheng Laboratory &
Xi’an Jiaotong University

Kelly Burkett
University of Ottawa

Abstract

Sparsity-restricted maximum likelihood estimation (SMLE) has received considerable
attention for feature screening in ultrahigh-dimensional regression. SMLE is a computa-
tionally convenient method that naturally incorporates the joint effects among features in
the screening process. We develop a publicly available R package SMLE, which provides
a user-friendly environment to carry out the SMLE method in generalized linear models.
In particular, the package includes functions to conduct SMLE-screening and the related
post-screening selection with popular selection criteria such as AIC and (extended) BIC.
The package gives users the flexibility in controlling a series of screening parameters and
accommodates both numerical and categorical feature input. The usage of SMLE is illus-
trated on extensive numerical examples, where the promising performance of the package
is well observed.

Keywords: EBIC, generalized linear models, iterative hard-thresholding, joint feature screen-
ing, ultrahigh-dimensional data.

1. Introduction

In modern scientific research, it is common to encounter ultrahigh-dimensional datasets with
a huge number of features. For example, geneticists often need to measure thousands to
hundreds of thousands of genes in the hope of discovering those that influence an observable
trait; an Internet firewall may scan millions of keywords on data packets in order to determine
their security risk. While ultrahigh-dimensional data bring rich resources to explore many
unknown areas, they pose simultaneous challenges of computational cost, statistical accuracy,
and algorithmic stability for classic statistical methods (Fan, Samworth, and Wu 2009).

https://doi.org/10.18637/jss.v115.i08
https://orcid.org/0000-0002-9488-5588

2 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

When the number of features is huge, it is often reasonable to assume that only a handful
of them are relevant to the analysis. In a regression setting, this amounts to assuming that
most predictors in an ultrahigh-dimensional model have no effect on the response (i.e., the
regression coefficient is zero). With this sparsity assumption, one natural strategy is to screen
most irrelevant features out before a more elaborate analysis is conducted. This pre-processing
procedure is referred to as feature screening. With dimensionality reduced from high to low,
analytical difficulties can be reduced drastically.
In recent years, much research has been done on feature screening. Fan and Lv (2008) pro-
posed to screen features based on their marginal Pearson correlations with the response; they
referred to this procedure as sure independence screening (SIS) and justified its theoretical
effectiveness for linear models. Fan and Song (2010) extended SIS to generalized linear models
(GLMs). In the same spirit, Zhu, Li, Li, and Zhu (2011) proposed a sure independent ranking
and screening (SIRS) based on the conditional distribution of the response given each feature.
Li, Zhong, and Zhu (2012) developed a model-free sure independence screening based on the
distance correlation (DC-SIS). Wu and Yin (2015) proposed a distribution function screening
by testing the independence between the response and each feature. Zhou, Zhu, Xu, and Li
(2020) proposed a robust screening method for features containing extreme values. Li, Li,
Xia, and Xu (2020) proposed a distributed screening framework for the divide-and-conquer
setup. The list above is certainly far from complete; readers may refer to Liu, Zhong, and Li
(2015) for a selective overview on feature screening.
In the literature, most screening methods are developed based on the marginal effects of
features on the response. Despite the convenience of implementation, these methods are
often found to be unreliable in practice, as the joint effects among features are ignored. Fea-
tures with significant joint effects but showing weak marginal effects are likely to be wrongly
screened out. To tackle this issue, Fan and Lv (2008) suggested applying SIS iteratively (ISIS)
with a smaller number of features retained in each round. Wang (2009) suggested using classic
forward regression for screening purposes. These strategies help to incorporate some feature
joint effects in the screening process. However, they are usually at a high computational cost,
which can be unfavorable in many applications.
Starting from a different angle, Xu and Chen (2014) proposed a joint feature screening method
via the sparsity restricted maximum likelihood estimator (SMLE). With a L0 penalty speci-
fying the number of features allowed in the model, the method attempts to roughly estimate
a handful of the most significant coefficients from the full model while setting all other co-
efficients to zero. Since the estimation is carried out on the full model, the resulting sparse
estimator readily serves as a feature screener, which naturally takes the joint effects among
features into account. The SMLE method can be efficiently implemented by an iterative hard-
thresholding algorithm (IHT), which does not involve complex numerical operations such as
matrix inversion. Each IHT iteration increases the value of the sparsity-constrained joint like-
lihood and thereby provides an improved sparse solution, which eventually leads to a reliable
screening result. Xu and Chen (2014) further justified the sure screening property of SMLE
in ultrahigh-dimensional GLMs and proved the convergence of the IHT algorithm. SMLE
has been demonstrated to be an effective tool for feature screening; the method has attracted
considerable attention in the literature (Yang, Yu, Li, and Buu 2016; Yang, Hou, Wang, and
Sun 2018; Qu, Hao, and Sun 2022).
In this paper, we provide a publicly available R package SMLE, which gives a user-friendly
environment to carry out SMLE in ultrahigh-dimensional GLMs including linear, logistic, and

Journal of Statistical Software 3

Poisson models. The package makes use of the crossprod() function to handle ultrahigh-
dimensional matrix products and includes a well-tuned main function to efficiently conduct
SMLE-screening based on the IHT algorithm. With the package, we are able to repeat the
same numerical experiments in Xu and Chen (2014) at a significantly reduced time cost in
comparison with the original code provided by the authors. In the package, we extend SMLE
by permitting both numerical and categorical features in the screening, where the categorical
features can be automatically identified and encoded by a user-selected method. Moreover,
combined with popular selection criteria such as AIC or (extended) BIC, we propose a SMLE-
based selection method, which helps to further identify the relevant features after screening.
This post-screening selection method can be conveniently conducted within the main screening
function or can be used independently on a user-supplied dataset. We illustrate the usage
of SMLE via extensive numerical examples. The promising performance of the package is
observed in comparison with SIS (Saldana and Feng 2018) and VariableScreening (Li, Huang,
and Dziak 2022), which are the standard R packages for feature screening.
The rest of the paper is organized as follows. In Section 2, we give a brief overview of SMLE
and the IHT algorithm. In Section 3, we discuss implementation details of the SMLE package.
In Section 4, we illustrate the usage of the package using extensive numerical examples and
compare its performance with several existing R packages. We conclude the paper in Section
5 with a few remarks.

2. The SMLE method

2.1. Notation and problem setup

Suppose the data {(yi, xi), i = 1, . . . , n} are collected independently from (Y, x), where Y is
a response variable and x = (x1, . . . , xp) is a p-dimensional covariate (feature) vector. We
postulate a GLM between Y and x as follows. Conditioning on x, the distribution of Y is
assumed to belong to an exponential family taking the form

f(y; θ) = exp(θy − b(θ) + c(y)),

where θ is the natural or canonical parameter and b(.), c(.) are two known functions. Under
the canonical link, x influences Y in the form of a linear combination

θ = xβ,

where β = (β1, . . . , βp)⊤ is a p-dimensional regression coefficient. Popular GLMs with canoni-
cal links include the normal linear model, the logistic model, and the log-linear Poisson model
(Nelder and Wedderburn 1972).
Under the GLM framework, the effect of each feature xj on the response Y is characterized
by the size of the corresponding regression coefficient βj . In applications, when the number
of features p is large, it is often believed that only a small number of the features in x
contribute to the variation in Y , which leads to an idealistic assumption that β contains
many zero elements. With this sparsity assumption, only features with non-zero coefficients
are considered to be relevant in explaining the variation of Y . The goal of feature screening
is to identify and remove most of the irrelevant features, so that a more elaborate analysis
can be conducted only on the features most likely to be related to Y .

4 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

2.2. The SMLE-screening and IHT algorithm
The idea of SMLE is simple. When p is overly large and most model coefficients are assumed
to be zero, it is probably not wise to estimate the entire β from scratch. Instead, it is
reasonable to consider just estimating some of the coefficients while setting the others to zero
from the beginning. This leads to a sparsity-restricted estimation, which readily serves for
feature screening.
Specifically, under the GLM given in Section 2.1, the log-likelihood function of β is given by

l(β) =
n∑

i=1
[yi · xiβ − b(xiβ)].

With a user-specified sparsity k < p, the SMLE estimator is defined by

β̂k = argmax
β

l(β) subject to ∥β∥0 ≤ k, (1)

where ∥.∥0 is the vector L0 norm indicating the number of non-zero elements in that vector.
Clearly, β̂k is designed to set all but the most significant k coefficients to be zero; this
amounts to identifying k important features supported most by the joint likelihood. When p
is large and k is chosen to be much smaller than p, β̂k can be viewed as a feature screener,
which naturally takes the joint effects among features into account. The idea of SMLE has
similarities with the use of L0-regularized techniques in image processing, where sparsity-
constrained least-squares methods are frequently used to construct sparse representations for
high-resolution images (Donoho 2006; Blumensath and Davies 2009).
While SMLE is conceptually simple, carrying out problem (1) can be numerically challenging,
as it is a high-dimensional combinatorial optimization. However, since our goal is feature
screening, finding the global solution to (1) is not a major concern. In fact, it would suffice if
we can obtain a good local solution, which helps to retain all relevant features.
In this spirit, Xu and Chen (2014) proposed an iterative hard-thresholding algorithm (IHT)
to approximately solve (1). The idea is as follows. With a γ close to β, one can approximate
l(β) by a surrogate function

h(β, γ) = l(γ) + (β − γ)⊤l′(γ) − (u/2)∥β − γ∥2
2, (2)

where l′(γ) = ∂l(γ)/∂γ, ∥.∥2 indicates the L2 (Euclidean) norm, and u > 0 is a scale param-
eter. The first two terms in (2) match the Taylor’s expansion of l(β) at β = γ, and the third
term is introduced as a regularization term to enhance the convexity.
The reason for introducing h(β, γ) is that it is separable in the components of β and thus
serves as a surrogate of l(β) to conveniently carry out the sparsity-restricted maximization
over β. Specifically, with an initial value β(0), we can seek a local solution of (1) via the
following iterative procedure.

β(t+1) = argmax
β

h(β, β(t)) subject to ∥β∥0 < k. (3)

Let y = (y1, . . . , yn)⊤ and X = (x⊤
i , . . . , x⊤

n)⊤. Because of the additivity of β in h, the
optimization in (3) takes a unified form

min
β

1
2

∥∥∥β − u−1[uβ(t) + X⊤y − X⊤b′(Xβ(t))]
∥∥∥2

2
subject to ∥β∥0 ≤ k, (4)

Journal of Statistical Software 5

Algorithm 1 SMLE-screening via IHT
Require: Data (y, X), screening size k, initial β(0), and decrease rate τ ∈ (0, 1)

set t = 1 and β(t) = Hk[β(0)]
initialize u−1 based on X and β(0)

repeat until stopping criterion is satisfied {
set ν = u−1, r = 0
repeat until l(β̃) ≥ l(β(t)) {

compute (5) and (6): β̃ = Hk[β(t) + νX⊤[y − b′(Xβ(t))]]
ν = τν
r = r + 1

}
β(t+1) = β̃
u-search(t) = r
t = t + 1

}
Output: β(t), the number of iterations t, the number of u-search tries in each iteration,
and an index set of retained features ŝ = {1 ≤ j ≤ p : β

(t)
j ̸= 0}

where b′ is the derivative of the b(.) function depending on the choice of GLM. Obviously, if
(4) does not come with the sparsity constraint, its solution should be

β̃
(t) = β(t) + u−1X⊤[y − b′(Xβ(t))], (5)

which corresponds to a zero loss in the objective function. Thus, the constrained minimum of
(4) is achieved by choosing the k largest (in absolute value) components of β̃

(t). Consequently,
β(t+1) in (3) has an explicit expression

β(t+1) = Hk[β̃(t)], (6)

where Hk[β] is the hard-thresholding operator setting all but the k largest components in |β|
to zero.
In IHT, u−1 serves as a step size, which controls the distance moved from β(t) to β(t+1).
While a larger u−1 often helps to boost the iterations, the procedure may fail to converge
when u−1 is overly large. Thus, to balance algorithm convergence and iteration efficiency, one
may choose to adaptively tune u−1 at each step (called u-search). Xu and Chen (2014) proved
that, when u−1 is small enough, the IHT procedure leads to a non-decreasing likelihood. In
our package, we first initialize u−1 with a large value and then adaptively decrease its size by
a factor of τ ∈ (0, 1) until l(β(t+1)) ≥ l(β(t)) is satisfied. This seems to be an effective way
for achieving sufficiently fast convergence.
We summarize the SMLE-screening procedure via IHT in Algorithm 1. As can be seen
from the algorithm summary, the procedure involves only simple numerical operations and
adaptively tuning u−1 often requires only a few tries to succeed. At each iteration, the
joint information carried in X is naturally accounted for as a basis for the next update.
These merits make SMLE-screening attractive in ultrahigh-dimensional data analysis, where
computational hurdles and complex data structures are often faced.

6 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

Algorithm 2 Post-screening selection with SMLE
Require: Data (y, Xs), selection criterion, sparsity lower and upper bounds kmin, kmax.

for k from kmin to kmax {
Obtain a sub-model sk by running Algorithm 1 with sparsity k on (y, Xs)
Evaluate sk by computing a score Ck based on the input selection criterion

}
Output sub-model s∗ ∈ {skmin

, . . . , skmax} with the smallest evaluation score Ck

Xu and Chen (2014) showed that, with appropriate u−1 and β(0), the IHT updates lead to
a local maximum of problem (1), which provides an index set of k important features, ŝ,
corresponding to the non-zero entries of β(t). Based on ŝ, we then obtain a refined feature set
from X for subsequent in-depth model fitting. Under some regularity conditions, ŝ contains all
the relevant features with probability tending to one even when p ≫ n, and thus is consistent
for feature screening (sure screening).
The IHT updates can be viewed as a member of the Majorize-Minimization algorithms. Its
practical performance is affected by a series of implementation decisions such as the choice of
initial value, stopping criterion, screening size k, and u-search. We address those algorithm
details in Section 3.2.

2.3. Post-screening selection with SMLE

In Xu and Chen (2014), SMLE is mainly proposed for feature screening, the goal of which
is to remove most irrelevant features before a more elaborate analysis. In practice, it is very
likely that the feature set retained after screening still contains some irrelevant features. In
principle, users can apply any well-developed selection method on the retained feature set to
further identify relevant features.
In particular, one may further use the idea of SMLE to conduct post-screening selection.
Specifically, assume that SMLE-screening was done and q features were retained; we obtain
a refined n × q feature matrix Xs. When q is moderate, we can conveniently obtain a series
of sub-models by running Algorithm 1 on (y, Xs) with sparsity k varying from kmin ≥ 1 to
kmax ≤ q. A final sub-model can then be selected based an information criterion such as
AIC (Akaike 1974), BIC (Schwarz 1978), and EBIC (Chen and Chen 2008). We summarize
this post-screening selection method in Algorithm 2, which inherits all the numerical merits
from Algorithm 1. In particular, the joint information in Xs is naturally accounted for in the
selection process.
Technically, Algorithm 2 can be used directly on X without the need for feature screening.
Its performance is actually quite impressive in our simulation studies. Nevertheless, when p is
very large, we do recommend using Algorithm 2 only after Algorithm 1 for improved accuracy
and stability.

3. Implementation details
The R package SMLE (Zang, Xu, and Burkett 2026) provides a set of functions for ultrahigh-
dimensional feature screening under generalized linear models. SMLE can be installed from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
SMLE using the following commands:

https://CRAN.R-project.org/package=SMLE
https://CRAN.R-project.org/package=SMLE

Journal of Statistical Software 7

Function name Description
Gen_Data() Simulate ultra-high dimensional GLM data
SMLE() Joint feature screening using the SMLE method
smle_select() Post-screening feature selection
predict() Fitted or predicted values under the final model
plot() Plot method to evaluate SMLE screening/selection for ob-

jects of class ‘smle’ or ‘selection’

Table 1: Main SMLE functions and their brief descriptions.

Gen_data() Simulated/User-
supplied data

SMLE()

logLik();coef();
predict()

smle_select()

summary();
plot();print()

Figure 1: Flowchart for calling functions in the SMLE package.

install.packages("SMLE")
library("SMLE")

SMLE requires the R packages glmnet (Friedman, Hastie, and Tibshirani 2010) for param-
eter initialization, mvnfast (Fasiolo 2023) and matrixcalc (Novomestky 2022) for simulating
correlated data.
In this section, we first briefly describe the anticipated work flow for a data analysis using
SMLE. We then provide a brief overview of the main functions of SMLE and illustrate the
use and output of the functions through simple function calls. Detailed numerical examples
are provided in Section 4.

3.1. SMLE work flow

The main SMLE functions are listed in Table 1. The work flow for a typical data analysis
with SMLE is illustrated in Figure 1 and is summarized as follows:

• For simulation studies or for testing purposes, the function Gen_Data() can be used to
simulate data assuming the response variable follows a GLM that depends on a small
subset of possibly-correlated features. Gen_Data() returns an object of class ‘sdata’
that contains the matrix of features, the response variable, and additional information
about the model used to simulate the data.

• The function SMLE() is the main function based on Algorithm 1 for screening out fea-

8 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

tures that are unlikely to be related to the response variable. Users can pass a ‘sdata’
object, a data frame, or a matrix containing the data to the function. SMLE() returns
a ‘smle’ object that contains the top k features and additional information about the
screening process.

• The function smle_select() is used to conduct accurate post-screening feature selec-
tion based on Algorithm 2. Users can choose to implement this function with a selection
criterion such as AIC, BIC or EBIC. Users can pass either a ‘smle’ object or a data
frame (matrix) to the function. smle_select() returns an object of class ‘selection’
that provides information about the selected features and the selection process. Users
may also choose to run smle_select() as a built-in option within the main function
SMLE() by setting the argument selection = TRUE.

• The plot() function for a ‘smle’ or ‘selection’ object can be used to visualize the
screening or selection results.

• The predict() function returns the fitted or predicted response values based on the
features retained in a ‘smle’ or ‘selection’ object.

• The package also includes several functions with usage similar to existing R functions for
summarizing objects and fitting regression models (e.g., summary(), coef(), logLik()).

3.2. Main functions and arguments

Simulating ultrahigh-dimensional GLM data

The motivation for the function Gen_Data() is to provide a freely available tool for simulating
ultrahigh-dimensional GLM datasets with complex correlation structures between features.
Some of the correlation structures available in this function were used in Xu and Chen (2014)
to compare feature screening approaches. Both numerical and categorical features are per-
mitted, and the number of features can be larger than the sample size. Users can choose the
sample size n and the total number of features p in the dataset.
Numerical features are sampled from a normal distribution with one of four commonly-used
correlation structures. The strength of correlation is controlled by a parameter ρ, which can
optionally be set by the user using the argument correlation. The four different correlation
structures are:

Independence (ID) All features are independently sampled from a standard normal dis-
tribution.

Moving average (MA) Features are jointly normal with covariance (correlation) ρ be-
tween adjacent features, ρ/2 between features two indices apart, and 0 otherwise. For
example, the covariance matrix for four features would be:

1 ρ ρ/2 0
ρ 1 ρ ρ/2

ρ/2 ρ 1 ρ
0 ρ/2 ρ 1



Journal of Statistical Software 9

Compound symmetry (CS) Features are jointly normal with covariance ρ/2 if both fea-
tures are causally related (relevant) to the response variable, and with covariance ρ
otherwise. For example, with four features and assuming that features one and four are
relevant, the covariance matrix used to simulate the features would be

1 ρ ρ ρ/2
ρ 1 ρ ρ
ρ ρ 1 ρ

ρ/2 ρ ρ 1



Auto-regressive (AR) Features are jointly normal with covariance cov(xj , xh) = ρ|j−h| for
the jth and hth features with j, h ∈ {1, . . . , p}.

Categorical features are generated by first binning a numerical feature that was simulated
as described above. The number of groups (levels) for a categorical feature is specified with
level_ctgidx. After binning, the feature is converted from class ‘numeric’ to ‘factor’ and
each bin is assigned a character from ‘A’ to ‘Z’. Users are able to specify the number of
categorical features in the dataset with the argument num_ctgidx, and their positions in the
dataset with the argument pos_ctgidx.
The response variable is simulated by assuming a GLM and that only a subset of the fea-
tures are influential on the response. Normal, binary, and Poisson response variables are all
available; the model is chosen with the argument family, as with the R function glm(). The
user can choose the number of influential features with the argument num_truecoef, and
optionally, their positions in the feature matrix and their model effects with the arguments
pos_truecoef and effect_truecoef, respectively. If the positions of the influential features
are not provided, they would be chosen randomly.
Gen_Data() returns an object of class ‘sdata’ containing the response vector y, the n × p
feature matrix X, and the coefficients for the features affecting the response.
The following code shows how to simulate a dataset with n = 200 observations and p = 1000
features, the first three of which are categorical, with three, four, and five levels, respectively.
The response variable is generated based on a normal linear model with five influential features
chosen by the function default.

R> set.seed(1)
R> Data_ctg <- Gen_Data(n = 200, p = 1000, family = "gaussian",
+ pos_ctgidx = c(1, 2, 3), level_ctgidx = c(3, 4, 5))
R> head(Data_ctg$X)[, 1:5]

C1 C2 C3 X4 X5
1 A B C -1.29171904 0.1370216
2 A B D 0.90967045 -1.2996452
3 B B A -1.10775568 1.1514089
4 B C C -0.38412387 1.5134475
5 B C D 0.08273483 0.8021379
6 B A D -0.48388247 -0.4305369

10 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

5000 10000 15000 20000

0
1

2
3

Linear model

The number of features

E
la

ps
ed

 T
im

e(
s)

Original Code

SMLE()

5000 10000 15000 20000
0

2
4

6
8

Logistic model

The number of features

E
la

ps
ed

 T
im

e(
s)

Original Code

SMLE()

Figure 2: Running time comparison between SMLE() and the original IHT implementation in
Xu and Chen (2014).

Joint feature screening

The main goal is to identify a manageable set of k < p features that are most related to the
response variable. To that end, SMLE() is used to screen out features unlikely to be influential
(i.e., irrelevant features); it serves as a pre-processing step before an in-depth analysis. Users
can pass information about the input data (y, X) to SMLE() via a ‘sdata’ object, a data
frame, or data matrices. When data are not input from a ‘sdata’ object, the user should
further specify the type of GLM with the argument family. The function conducts effective
feature screening based on Algorithm 1, which naturally incorporates the joint effects among
features. In SMLE(), we make use of the R function crossprod() to handle the ultrahigh
dimensional matrix product involved in Algorithm 1 without doing matrix transpose; this
leads to improved computational efficiency in comparison with the original implementation in
Xu and Chen (2014). In Figure 2, we show the averaged elapsed time (in seconds) of SMLE()
and the original IHT code on a series of datasets generated by Gen_Data(correlation =
"ID") with n = 200 and p varying from 4000 to 20000. The running time is based on 100
repetitions.
In Table 2, we list the main arguments of SMLE() for specialized users to control the screening
process. In particular, the argument k controls the number of important features to be re-
tained from X after screening. The choice of k should reflect a user’s belief or prior knowledge
on the total number of relevant features for the input data. Intuitively, a larger k increases the
chance of retaining all relevant features, while a smaller k brings more interpretive value and
computational convenience for the subsequent in-depth analysis. One practical strategy is to
set k to be three times larger than the anticipated number of relevant features. In SMLE(), the
default value of k is the largest integer not exceeding 0.5 log(n)n1/3, which is recommended
in Xu and Chen (2014) from a theoretical perspective.

Journal of Statistical Software 11

The argument coef_initial allows users to specify an initial value β(0) for SMLE-screening.
Since Algorithm 1 may lead to a local maximum, an informative β(0) helps to improve screen-
ing accuracy. This argument can be helpful in applications, where prior knowledge of the
model coefficients are available. When the number of non-zero components of β(0) is larger
than p, SMLE()() will truncate it to k, ensuring the non-decreasing property of the IHT algo-
rithm. The default value of coef_initial is the Lasso (Tibshirani 1996) estimate with the
largest sparsity not exceeding n − 1, which is implemented by the function glmnet(pmax =
n-1)() in the R package glmnet. This data-driven choice is recommended in Xu and Chen
(2014) and is also supported by our numerical studies.
When a non-informative initialization is preferred, one may simply set β(0) = 0, which runs
Algorithm 1 with a null model. In this case, SMLE()() starts from scratch and iteratively
detects important features via β(t) during the IHT process (see Figure 4). Since a non-
decreasing likelihood is obtained by IHT updates, technically β(t) from Algorithm 1 can
always be viewed as an improvement over β(0) in terms of the joint likelihood. In particular,
when SMLE is used on linear models with β(0) = 0, the screening result based on β(1) coincides
with the SIS-screening based on marginal effects; β(2) further improves SIS by incorporating
joint information in X. Readers may refer to Section 4.3 for a numerical comparison between
the informative and non-informative initialization strategies.
In SMLE(), the initial value of u−1 is determined as follows. When β(0) = 0, we simply set
u−1 = U/

√
p with U > 0 being a magnification parameter. When β(0) ̸= 0, we generate a

sub-matrix X0 using the columns of X indicated by {j : β
(0)
j ̸= 0} and set

u−1 = U
√

p∥X0∥2
∞

,

where ∥.∥∞ is the matrix infinity norm denoting the maximum absolute row sum of a matrix.
The use of √

p∥X0∥2
∞ serves as a computationally convenient replacement for computing the

largest eigenvalue of XT X, which is used in Xu and Chen (2014) as a theoretical guidance for
choosing u. Users can specify the magnification parameter U and the decrease rate τ ∈ (0, 1)
in u-search with the arguments U and U_rate, respectively. The default values are U = 1 and
U_rate = 0.5.
SMLE() terminates the IHT iterations when ∥β(t) − β(t−1)∥2 is below the tolerance level
specified in the argument tol. Since our goal here is feature screening, a large number
of iterations t may not always be necessary. We observe that, in many of our numerical
examples, SMLE() can successfully identify all the relevant features within a few iterations
by estimating the corresponding coefficients to be non-zero. Therefore, when an accurate
coefficient estimate is not needed, users may choose to set the argument fast = TRUE, which
allows early stopping of Algorithm 1. Specifically, with fast = TRUE, SMLE() terminates the
IHT iterations when one of the following rules is satisfied:

• ∥β(t) − β(t−1)∥2 < k1/2 × tol,

• l(β(t)) − l(β(t−1)) < 0.01 [l(β(2)) − l(β(1))],

• The non-zero entries in {β(t)} remain unchanged for 10 consecutive iterations.

When the input data for SMLE() contains categorical features, users should set the argument
categorical = TRUE, which enables the function to automatically detect the locations and

12 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

Arguments Description Default value

k Total number of features to be retained after
screening.

1
2 log(n)n1/3

keyset A vector to indicate a set of key features that
are forced to remain in the model.

NULL

coef_initial Initial coefficient value β(0) for IHT. glmnet(pmax = n - 1)
categorical Logical flag for whether the input feature ma-

trix includes categorical features.
NULL

group Logical flag for whether to treat the dummy
variables corresponding to each categorical
feature as a group.

TRUE

tol A tolerance level for ∥β(t) − β(t−1)∥2 to stop
the iteration.

10−2

fast Logical flag to enable early stop for IHT. FALSE
U_rate Decrease rate in u-search. 0.5
U Initial magnification level in u-search. 1

Table 2: Main arguments for the SMLE() function.

levels of the factor columns in the feature matrix. By default, a L-level categorical feature
would be encoded by L−1 dichotomous dummy variables, which are to be retained or screened
out together if group = TRUE.
With the keyset argument, users can choose to manually keep a subset of features in the
SMLE-screening process; this can be useful when some features are known to be influential
or confounding. The following code demonstrates the usage of SMLE() with keyset on the
previously generated dataset Data_ctg. Here we ensure that the first (C1), the fourth (X4),
and the fifth (X5), features are always kept during the IHT updates and are therefore surely
retained after screening. In this example, since we choose to retain k = 15 features in total,
the retained set would include the 3 features specified in keyset plus 12 features to be
suggested by Algorithm 1. When keyset contains categorical features, it is required to have
group = TRUE.

R> fit <- SMLE(Y = Data_ctg$Y, X = Data_ctg$X, k = 15,
+ family = "gaussian", keyset = c(1, 4, 5),
+ categorical = TRUE, group = TRUE)

SMLE() returns an object of class ‘smle’, which contains information regarding the input data,
model assumption, IHT updates, and the screening results.

Post-screening selection

As mentioned in Section 2.3, the features retained after screening are still likely to contain
some that are not related to the response. The function smle_select() is designed to
implement Algorithm 2 to further identify the relevant features.
smle_select() can be applied to a ‘sdata’ object, a ‘smle’ object, or a user-supplied dataset
(y, Xs). As discussed before, when p is very large, a screening step is usually needed before

Journal of Statistical Software 13

Arguments Description Default value
k_min (k_max) The lower (upper) bound for candi-

date model sparsity.
k_min = 1, k_max = num-
ber of input features

sub_model A index vector indicating which fea-
tures are to be selected. Not applica-
ble if a ‘smle’ object is the input.

NULL

criterion Selection criterion to be used. One of
"ebic","bic","aic".

"ebic"

gamma_ebic The EBIC parameter in [0, 1]. 0.5
gamma_seq The sequence of values for

gamma_ebic when vote = TRUE.
(0,0.2,0.4,0.6,0.8,1)

vote The logical flag for whether to per-
form the voting procedure, when
criterion = "ebic".

FALSE

vote_threshold A relative voting threshold in per-
centage. A feature is considered to
be important when it receives votes
passing the threshold.

0.6

para Logical flag to use parallel computing
to do selection.

FALSE

Table 3: Main arguments for the smle_select() function.

smle_select() can be efficiently applied. In the package, we provide an option to automat-
ically run smle_select() after screening within the main function SMLE().
We list the main arguments of smle_select() in Table 3. Users can set the range or specify
a subset of features to be further selected. With the argument criterion, users can choose
to run smle_select() using their preferred selection criterion.
When the criterion EBIC is used, users may further specify its tuning parameter using the
argument gamma_ebic. Alternatively, one may set vote = TRUE, which would repeat the
EBIC-based selection with a sequence of tuning parameters provided in gamma_seq. With
different tuning parameters, different sets of features would be selected; a feature is considered
to be important when it is selected more than vote_threshold of times in the entire proce-
dure. Users may change this threshold to enlarge or reduce the size of the selected model by
using the vote_update() function, which is a simple method for a ‘selection’ object that
avoids the need to re-run smle_select().
The following code demonstrates the use of smle_select() with EBIC voting on the ‘smle’
object fit generated before. The output fit_s is an object of class ‘selection’, which
contains the information regarding the selection procedure and result.

R> fit_s <- smle_select(fit, criterion = "ebic",
+ gamma_seq = seq(0, 1, 0.2), vote = TRUE)

In smle_select(), the selection is done by evaluating a sequence of sub-models with sizes
varying from k_min to k_max. The arguments k_min and k_max allow the users to control the
searching range based on their prior knowledge or expectation about the model size.

14 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

0 50 100 150 200

−
45

0
−

35
0

−
25

0
Likelihood convergence

steps

lo
g−

lik
el

ih
oo

d

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

Coefficient convergence

steps
L2

−
di

st
 b

/w
 b

et
a

up
da

te
s

0 50 100 150 200

3.
0

3.
5

4.
0

4.
5

5.
0

U−search

steps

N
o.

 o
f t

rie
s

0 50 100 150 200

0
2

4
6

8
10

Retained feature change

steps

N
o.

 o
f c

ha
ng

es

Figure 3: Example plot for ‘smle’ class – IHT Convergence with β(0) = 0.

When the package is run in a multi-core computing environment, users may opt to use par-
allel computing to boost this selection procedure. Specifically, by setting para = TRUE, the
creation and evaluation of the sub-models would be distributed to multiple computing cores
for parallel processing. The implementation of the parallel option uses the parallel R pack-
age (R Core Team 2025) and depends on the user’s operating system: for Unix and Mac
users mclapply() is used and for Windows parLapply() is used. Note that smle_select()
is mainly designed for post-screening selection, where the number of candidate features is
moderate and the associated computational cost is often acceptable. Considering the com-
munication cost between cores, parallel processing may not necessarily lead to a significant
speed-up for the regular usage of smle_select().

Plotting

Plot functions have been included for both the ‘smle’ and ‘selection’ classes. The plot()
function for class ‘smle’ returns two plot windows. By default, the first plot window contains

Journal of Statistical Software 15

0 50 100 150 200

−
4

−
3

−
2

−
1

0
1

2

Solution path

steps

co
ef

fic
ie

nt
s

9

35

1
7

73

775910

311982

Figure 4: Example plot for ‘smle’ class – IHT solution path with β(0) = 0.

four subplots each showing a measure of IHT convergence on the vertical axis and iteration
index on the horizontal axis; see Figure 3 as an example. The convergence measures are:

• log-likelihood (top left),

• Euclidean distance between the current and previous coefficient estimates (top right),

• the number of u-search tries in Algorithm 1 (bottom left),

• the number of membership changes in the retained feature set between the current and
the previous IHT updates (bottom right).

The second plot window shows the solution path (estimated coefficient by IHT iteration) for
selected features; see Figure 4 as an example. This plot provides a direct insight on how
a coefficient changes over the iterations. By default, the solution path is given for all the
relevant features suggested in the input ‘smle’ object. Users may choose to plot a solution
path for a customized group of features. This can be done by plotting only the top num_path
features or plotting only the features specified in the argument which_path.
Users can optionally change which figure appears in the second plot window. For example,
passing the argument outplot = 1 will cause the log-likelihood to appear in the second plot
window; the solution path will instead be plotted in the first plot window. Any additional
arguments passed to plot() will be used when creating the plot in the second plot window.
The plot() function for an object of ‘selection’ class returns a plot showing the selec-
tion criterion scores evaluated for the candidate sub-models with varying sizes (number of

16 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

4 6 8 10 12 14

70
0

75
0

80
0

85
0

90
0

95
0

10
00

number of features in model

eb
ic

 v
al

ue

(a) Selection criterion

1 4 5 129 509 679 836 930 50 233 405 555 683

voting results

candidate features IDs

fe
at

ur
es

 v
ot

in
g

pr
op

or
tio

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Voting results

Figure 5: Example plot for ‘selection’ class.

features); see Figure 5(a) as an example. A selection curve typically has a "V" shape: the
curve decreases at the beginning as sub-model size increases before it increases again when
there is little benefit in including additional features. For example, Figure 5(a) suggests a
sub-model with six features, which are to be treated as influential ones. When criterion EBIC
is used with vote = TRUE, plot() additionally returns a voting plot showing the relative
inclusion frequency of each feature in the sequence of sub-models generated by Algorithm 2;
see Figure 5(b).

Prediction

The predict() function in SMLE is based on the generic predict() function in stats; it
returns predicted response values based on a model containing only the features retained in
a ‘smle’ object or selected in a ‘selection’ object. The predictions are made by fitting the
model using the glm() function.

As with the predict() function for class ‘glm’ or ‘lm’, users can optionally specify a data
frame with new values for the features in the model using the newdata argument. If newdata
is not provided, predictions will be given for the original training data; this leads to the fitted
response values.

When using predict(), the type of prediction required must be specified using the type
argument. The default is type = link which returns predictions on the scale of the linear
predictor; type = response returns predictions on the scale of the response variable. In
particular, with type = response, predict() returns the predicted mean responses for a
linear or Poisson model and the predicted success probabilities for a logistic model.

Journal of Statistical Software 17

Additional functions for regression-based objects

SMLE has some additional functions that can be used to extract information about the model
fit. Specifically, the function logLik() first refits the screened (or selected) model using
glm() and then returns the log-likelihood of the fitted model. The function coef() can be
conveniently used to extract regression coefficients from a fitted ‘smle’ or ‘selection’ object.
In addition, summary() is extended from the base function to take a ‘smle’ or ‘selection’
object and displays summary information about the fitted model object.

4. Examples
We demonstrate the usage and effectiveness of SMLE using a series of simulation studies.
Numerical experiments were conducted on a Mac laptop with M1 chip and 8 GB memory
and were performed using R 4.2.2 (R Core Team 2025).

4.1. Demo code for SMLE-screening

We first show how to use SMLE to conduct feature screening and post-screening selection via a
simulated example. To this end, we use Gen_Data() to generate a synthetic dataset with n =
400 observations and p = 1000 features. We generate the feature matrix X from a multivariate
normal distribution with an auto-regressive structure, where the adjacent features have a high
correlation of ρ = 0.9. The response variable Y is generated based on the following logistic
model with success rate π and linear predictor:

logit(π) = 2x1 + 3x3 − 3x5 + 3x7 − 4x9.

In this setup, the feature matrix contains only five features that are causally-related to the
response, as indicated in the model.
This dataset is generated by the following code; the resulting simulated data are stored in
Data_eg, which is an object of class ‘sdata’. Users can use the print() function to show
properties of the simulated data.

R> set.seed(1)
R> Data_eg <- Gen_Data(n = 400, p = 1000, family = "binomial",
+ correlation = "AR", rho = 0.9, pos_truecoef = c(1, 3, 5, 7, 9),
+ effect_truecoef = c(2, 3, -3, 3, -4))
R> print(Data_eg)

Call:
Gen_Data(n = 400, p = 1000, pos_truecoef = c(1, 3, 5, 7, 9),

effect_truecoef = c(2, 3, -3, 3, -4), correlation = "AR",
rho = 0.9, family = "binomial")

An object of class sdata

Simulated Dataset Properties:
Length of response: 400

18 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

Dim of features: 400 x 1000
Correlation: auto regressive
Rho: 0.9
Index of Causal Features: 1, 3, 5, 7, 9
Model Type: binomial

We then run SMLE() to conduct SMLE-screening on the data example Data_eg, assuming that
the identities of the causal features were unknown; the goal is to obtain a refined feature set
by removing most irrelevant features from X. The following code shows the simplest function
call to SMLE(), where we aim to retain only k = 10 important features out of p = 1000.

R> fit1 <- SMLE(Y = Data_eg$Y, X = Data_eg$X, k = 10, family = "binomial",
+ coef_initial = rep(0, 1000))
R> summary(fit1)

Call:
SMLE(X = Data_eg$X, Y = Data_eg$Y, k = 10, family = "binomial",
coef_initial = rep(0, 1000))

An object of class summary.smle

Summary:

Length of response: 400
Dim of features: 400 x 1000
Model type: binomial
Model size: 10
Feature name: 1, 3, 5, 7, 9, 10, 404, 470, 535, 661
Feature index: 1, 3, 5, 7, 9, 10, 404, 470, 535, 661
Intercept: 0.2793397
Coefficients estimated by IHT: 1.894, 3.534, -2.648, 3.517, -4.617, -0.615,
-0.429, -0.549, 0.382, 0.578
Number of IHT iteration steps: 252

The function returns a ‘smle’ object in the variable called fit1. The summary() function
confirms that a refined set of 10 features is retained after 252 IHT iterations. We can see
that all 5 causal features used to generate the response are retained in the refined set. This
indicates that screening is successful; the dimensionality of the feature space is reduced from
p = 1000 down to k = 10 without losing any important information.
In the code that follows, we fit a marginal regression between the response and the second
feature, x2, in Data_eg. From the true model, we know that x2 is not causally-related to
the response. Yet, we can see that the marginal effect of x2 appears to be pretty high; thus,
this irrelevant feature is likely to be retained in the model if the screening is done based
on marginal effects only. In this example, SMLE() accurately removes x2, as its screening
naturally incorporates the joint effects among features.

R> with(Data_eg, coef(summary(glm(Y ~ X[,2], family = "binomial"))))

Journal of Statistical Software 19

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.02440072 0.1125979 0.2167067 8.284369e-01
X[, 2] 1.10465766 0.1337063 8.2618250 1.434619e-16

Note that the refined set returned in fit1 still contains some irrelevant features; this is to
be expected, as the goal of feature screening is merely to remove most irrelevant features
before conducting an in-depth analysis. As discussed in Section 2.3, one may conduct an
elaborate selection on the refined set to further identify the causal features. In particular,
the smle_select() function in SMLE can be readily used for the purpose of post-screening
selection. The following code shows how this function can be used on fit1 with the selection
criterion EBIC. As can be seen below, smle_select() returns a ‘selection’ object fit1_s,
which exactly identifies the five features in the true data generating model.

R> fit1_s <- smle_select(fit1, criterion = "ebic")
R> summary(fit1_s)

Call:
smle_select(object = fit1, criterion = "ebic")

An object of class summary.selection

Summary:

Length of response: 400
Dim of features: 400 x 1000
Model type: binomial
Selected model size: 5
Selected features: 1, 3, 5, 7, 9
Selection criterion: ebic
Gamma for ebic: 0.5

As mentioned in Section 3.2, users can visualize the above screening and selection results
by using the plot() function. Users can also make use of the arguments such as keyset or
k_min to refine the above results.

4.2. Screening performance

Next, we assess the performance of SMLE in terms of screening accuracy and efficiency.
To this end, we use Gen_data() to generate 500 independent datasets with p = 2000 and
n = 100, 250, 600 from linear, Poisson, and logistic models, respectively. For all these datasets,
a compound symmetry structure with ρ = 0.3 is used, where the first four features (i.e., x1,
x2, x3, x4) are used to generate the response variable. An equal coefficient is assigned to each
of the four causal features; the value of the coefficient is set to 2.5, 0.7, and 1.1 for the three
aforementioned models, respectively.
We use SMLE() in our package to conduct feature screening on these simulated datasets
to retain only k = 20, 10, 30 important features for linear, Poisson, and logistic models,
respectively. We measure the screening accuracy by sure screening rate (SSR) and positive

20 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

Model Functions PRR SSR Time
Linear SIS(iter = FALSE) 0.21 0.00 0.02

SIS(iter = TRUE) 0.73 0.60 1.36
screenIID() 0.18 0.00 0.41
glmnet() 0.37 0.04 <0.01
abess() 0.65 0.46 0.01
SMLE() 1.00 1.00 0.01

Poisson SIS(iter = FALSE) 0.08 0.00 0.05
SIS(iter = TRUE) 0.51 0.38 3.26
screenIID() 0.50 0.00 2.21
glmnet() 0.09 0.00 0.01
abess() 0.63 0.51 0.03
SMLE() 0.93 0.85 0.81

Logistic SIS(iter = FALSE) 0.53 0.04 0.15
SIS(iter = TRUE) 0.65 0.37 9.09
screenIID() 0.50 0.00 14.69
glmnet() 0.78 0.43 0.02
abess() 0.91 0.81 0.14
SMLE() 0.94 0.82 0.10

Table 4: Comparison of screening performance of SIS(), glmnet(), screenIID(), abess()
and SMLE().

retaining rate (PRR). SSR is reported as the proportion of times that all causal features are
retained after screening; PRR is calculated by the averaged proportion of causal features that
are retained after screening. An averaged elapsed time (in seconds) for SMLE() in each model
setup is reported as a measure of screening efficiency. For comparison, the performances of
(I)SIS, DC-SIS, and Lasso are also reported under the same setup. Moreover, we repeat the
experiments using the method of Abess, which was proposed in Zhu, Wen, Zhu, Zhang, and
Wang (2020) for the high-dimensional best subset selection. Following the recommendations
from the corresponding packages, we implement SIS by SIS(iter = FALSE) and ISIS by
SIS(iter = TRUE) in package SIS (Saldana and Feng 2018), DC-SIS by screenIID() in
package VariableScreening (Li et al. 2022), Lasso by glmnet() in package glmnet (Friedman
et al. 2010), and Abess by abess() in package abess (Zhu et al. 2022).
We summarize the simulation results in Table 4, where all decimal numbers are rounded to
2 digits. It can be seen that SMLE() has the highest accuracy for all three model setups
in terms of both SSR and PRR; the other methods (packages) seem to be heavily affected
by the correlation among the features. By the nature of Algorithm 1, the high accuracy of
SMLE() comes with a computational cost, but this is moderate in most cases. Considering
the improved accuracy of SMLE(), this small computational investment seems to be quite
worthwhile.

4.3. Impacts of initialization

As discussed in Section 3.2, a good choice of β(0) may be beneficial for SMLE-screening. To

Journal of Statistical Software 21

Default Zero

SSR
PSR

R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Default Zero

SSR
PSR

R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Screening accuracy of SMLE() when initialized with default values or a zero-
vector. Left: Data simulated to have independent features. Right: Data simulated with
autocorrelated features with ρ = 0.9.

provide some insights, we ran SMLE() on simulated datasets with coef_initial being the
default value or a zero vector. The datasets in this example are generated by the following
code.

R> Data_S1 <- Gen_Data(n = 300, p = 1000, family = "binomial",
+ correlation = "ID", pos_truecoef = c(1, 3, 5, 7, 9),
+ effect_truecoef = c(2, 3, -3, 3, -4))
R> Data_S2 <- Gen_Data(n = 400, p = 1000, family = "binomial",
+ correlation = "AR", rho = 0.9, pos_truecoef = c(1, 3, 5, 7, 9),
+ effect_truecoef = c(2, 3, -3, 3, -4))

Based on Data_S1 and Data_S2, we calculated SSR and PSR of SMLE-screening with both
default and zero start for 100 repetitions; the results are shown in Figure 6. It is seen that
both initialization strategies lead to high screening accuracy on Data_S1, where features are
independent with each other. The benefits of using an informative β(0) is observed on Data_S2,
where strong correlations present among the features. These findings seem to support the
recommended value of coef_initial in the SMLE package; users may also make their own
choice of coef_initial based on the prior knowledge about model parameters.

4.4. Application to high-dimensional genetic data

To further demonstrate SMLE, we applied it to a simulated high-dimensional genetic dataset
to detect associations between single-nucleotide polymorphisms (SNPs) and a response vari-
able. To get a realistic genetic dataset, the genotypes were sampled from genotypic distribu-
tions derived from the 1000 Genomes project, Phase 1 (The 1000 Genomes Project Consor-
tium 2015) using the R package sim1000G (Dimitromanolakis, Xu, Krol, and Briollais 2019).
Since the SNP distributions are derived from individuals from existing human populations,
this dataset naturally has a complex correlation structure. In particular, it is believed that
strong non-linear correlations are present between SNPs in close proximity from the same
chromosome.
The dataset consists of p = 10, 031 SNPs from chromosomes 14 through 22 on n = 800 indi-

22 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

0

2

4

6

8

Chromosome

−
lo

g 1
0(p

)

14 15 16 17 18 19 20 21 22

Figure 7: Manhattan plot of − log10(p value) for the single-SNP association test by package
qqman (Turner 2018). The blue line represents suggestive significance. The colored points
correspond to SNPs simulated to be causally related to the response in the order of impor-
tance: red, orange, blue, green.

viduals. The genotypes were coded as 0, 1, or 2 by counting the number of minor alleles (the
allele that is less common in the sample). The continuous response variable was simulated
from a normal distribution with mean that depends additively on the causal SNPs and a stan-
dard deviation of 8. The linear predictor for the response assumed a polygenic model, which
specified 31 SNPs with small to large effects. The goal here is to locate regions containing
the 31 causal SNPs; the effects of those SNPs were determined as follows.

• Twenty SNPs were randomly selected to have small effects, which were drawn from a
N(0, 0.1) distribution.

• Five SNPs were randomly selected to have moderate effects, which were drawn from a
N(0, 0.5) distribution.

• Four SNPs (labelled: rs2967291, rs1534941, rs112915930, rs6132052) were selected to
have large magnitude effects. Their effects were fixed at 2, −2, 1 and −1, respectively.

• Two SNPs were selected to have an effect on the response only through an interaction;
no marginal effect was simulated. The two SNPs are labelled rs12608528 and rs11157211
and their interaction coefficient was set to be 4.

Journal of Statistical Software 23

0

2

4

6

8

SIS()

Chromosome

−
lo

g 1
0(p

)

14 15 16 17 18 19 20 21 22

0

2

4

6

8

glmnet()

Chromosome

−
lo

g 1
0(p

)

14 15 16 17 18 19 20 21 22

0

2

4

6

8

SMLE()

Chromosome

−
lo

g 1
0(p

)

14 15 16 17 18 19 20 21 22

Figure 8: Important genetic regions flagged with red lines by SIS() (top left), glmnet()(top
right) and SMLE()(bottom).

• The intercept was arbitrarily chosen to be 40 in order to avoid negative response values.

This simulated genetic dataset is included in SMLE and can be loaded with the following
command.

R> data("synSNP")

We saved the response as a vector Y_SNP and the features as a matrix X_SNP.

R> Y_SNP <- synSNP[, 1]
R> X_SNP <- as.matrix(synSNP[, -1])

24 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

Averaged MRD = 176.06

0

500

1000

1500

2000

0 1 2 3 4
Effect size

D
is

ta
nc

e

SIS()

Averaged MRD = 66.84

0

500

1000

1500

2000

0 1 2 3 4
Effect size

D
is

ta
nc

e

glmnet()

Averaged MRD = 42.23

0

500

1000

1500

2000

0 1 2 3 4
Effect size

D
is

ta
nc

e

SMLE()

Figure 9: MRD with the casual SNPs for SIS() (top left), glmnet() (top right), and SMLE()
(bottom).

The goal of study here is to flag genomic regions likely to contain the causal SNPs. This job
can be typically done by identifying a small set of key SNPs and then marking the nearby
locations. As a conventional approach, we first performed a single-SNP analysis using linear
regression to test the marginal effects of the SNPs on the response. We report − log10 of
the p value of the corresponding estimated marginal coefficients using a Manhattan plot
(Figure 7). The p value of the 31 causal SNPs are colored based on their effect sizes. The
blue line shows the conventional threshold used to declare suggestive significance (p value
< 10−5). We observed that only one SNP passed this threshold, which was simulated to have
a large effect (rs11157211). All other SNPs did not show marginal significance and thus were
not treated as the key ones. As a result, the conventional marginal-test-based approach failed
to flag all the regions harboring the causal SNPs.

Journal of Statistical Software 25

100

200

300

400

40 60 80 100
Screening size (k)

A
ve

ra
ge

d
M

R
D

Method
SIS()
SMLE()
glmnet()

Figure 10: The averaged MRD on causal SNPs for SIS(), SMLE() and glmnet() with varying
k.

We then ran SMLE() to flag genomic regions by retaining k = 80 key SNPs after screening.
The results were compared with those obtained by SIS() and glmnet(). The three methods
were carried out with the following code.

R> SMLE_fit <- SMLE(Y = Y_SNP, X = X_SNP, family = "gaussian", k = 80,
+ fast = FALSE)
R> SIS_fit <- SIS(y = Y_SNP, x = X_SNP, family = "gaussian", nsis = 80,
+ iter = FALSE)
R> lasso_fit <- glmnet(x = X_SNP,y = Y_SNP, family = "gaussian", pmax = 80)

Figure 8 shows the screening result from the above code. It is observed that SIS() focused on
chromosomes 14, 20, and 21, where SNPs have relatively larger marginal effects; in contrast,
SMLE() and glmnet() flagged regions across all chromosomes.
To assess the screening performance, for each of the 31 causal SNPs we computed the min-
imum distance between that SNP and the SNPs in the retained set (MRD). A small MRD
indicates that the retained set contains at least one SNP that is close to the causal SNP;
consequently, genetic regions suggested by the retained SNPs are likely to contain the causal
SNPs. Therefore, an effective screening is expected to have small MRDs for most causal
SNPs.
Figure 9 shows the MRDs of the 31 causal SNPs from the screening conducted with SMLE(),
SIS(), glmnet(). The horizontal axis of the figure denotes the true effect sizes of the causal
SNPs. Since the SIS method only uses the marginal information, the 80 locations suggested
by SIS() tend to be very close to the peak on chromosome 20, as shown in Figure 7; this leads
to large MRDs (with a mean value of 176.06) for most causal SNPs that are away from this
peak. Since SMLE() and glmnet() consider joint effects, they achieved much smaller MRDs,
with the mean values given by 42.23 and 66.84 respectively.

26 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

We repeated the analysis by increasing the model screening size, k. The corresponding aver-
aged MRDs for all causal SNPs are shown in Figure 10. The performance of all three methods
improves as k increases. Compared with the other two methods, SMLE() tends to be more
stable; it conducts effective screening by consistently achieving a low averaged MRD over
different choices of k. The high reliability makes it a preferable choice in practice.
To summarize, as shown in Figure 8, both SMLE() and glmnet() flagged regions across all
chromosomes, while SIS() only focuses on chromosomes containing SNPS with large marginal
effects. The benefit of using SMLE() is demonstrated in Figure 9, where SMLE() leads to about
20% improvement over glmnet() in the averaged MRD among all causal SNPs. SMLE() also
shows an advantage in locating the two causal SNPs (rs12608528, rs11157211) with a large
interaction effect. The stable performance of SMLE() is further supported by Figure 10 with
varying screening sizes.

5. Concluding remarks
In this paper, we introduced a user-friendly feature screening package SMLE as a powerful tool
to process ultrahigh-dimensional GLMs. The package provides an efficient implementation of
the joint screening method SMLE, which leads to more reliable screening results compared
with the commonly-used marginal methods. In SMLE, users can also conduct accurate post-
screening selection based on an accelerated IHT procedure with a preferred selection criterion.
Plotting tools are provided to visualize the screening and selection results, which can be readily
used for making inference or prediction.
We illustrated the usage of the main functions in SMLE with discussions and examples. The
effectiveness and efficiency of the package are supported by extensive numerical studies.
The idea of SMLE has been demonstrated to be attractive in processing many types of
ultrahigh-dimensional data. In the current version, the package focuses on feature screening
for GLMs, which have been widely used in many scientific areas. It would be promising to
extend the application scope of SMLE to other modeling scenarios such as Cox’s proportional
hazards models and multivariate response regression, where the SMLE-based methodology
has been discussed in the literature.
For future work, it is also of great interest to embed SMLE in a distributed (federated)
computing framework (Sun, He, Wu, and Huang 2023), to better enable feature screening for
big data stored in data segments. Depending on the nature of the research problem, each
data segment may measure the same set of features on different groups of objects, or different
sets of features on the same group of objects. Due to legal, ethical or commercial restrictions,
aggregating those segments is usually not allowed, and thus it is preferable to use SMLE in
a distributed manner. Equipping SMLE with recent distributed estimation techniques (e.g.,
Jordan, Lee, and Yang 2018) provides a possible route to explore this emerging domain.

Acknowledgments
This work was supported in part by National Key R&D Program of China under grant
2023YFA1008703, Major Key Project of PCL under grant PCL2024A06, and Natural Science
Engineering Research Council of Canada under grant RGPIN-2019-06051. The content is
solely the responsibility of the authors and does not necessarily represent the official views of
the aforementioned funding agencies.

Journal of Statistical Software 27

References

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19(6), 716–723. doi:10.1109/tac.1974.1100705.

Blumensath T, Davies ME (2009). “Iterative Hard Thresholding for Compressed Sensing.”
Applied and Computational Harmonic Analysis, 27(3), 4028–4031. doi:10.1016/j.acha.
2009.04.002.

Chen J, Chen Z (2008). “Extended Bayesian Information Criteria for Model Selection with
Large Model Spaces.” Biometrika, 95(3), 759–771. doi:10.1093/biomet/asn034.

Dimitromanolakis A, Xu J, Krol A, Briollais L (2019). “sim1000G: A User-Friendly Ge-
netic Variant Simulator in R for Unrelated Individuals and Family-Based Designs.” BMC
Bioinformatics, 20(1), 26. doi:10.1186/s12859-019-2611-1.

Donoho DL (2006). “Compressed Sensing.” IEEE Transactions on Information Theory, 52(4),
1289–1306. doi:10.1109/tit.2006.871582.

Fan J, Lv J (2008). “Sure Independence Screening for Ultrahigh Dimensional Feature Space.”
Journal of the Royal Statistical Society B, 70(5), 849–911. doi:10.1111/j.1467-9868.
2008.00674.x.

Fan J, Samworth R, Wu Y (2009). “Ultrahigh Dimensional Feature Selection: Beyond the
Linear Model.” Journal of Machine Learning Research, 10, 2013–2038.

Fan J, Song R (2010). “Sure Independence Screening in Generalized Linear Models with NP-
Dimensionality.” The Annals of Statistics, 38(6), 3567–3604. doi:10.1214/10-aos798.

Fasiolo M (2023). mvnfast: Fast Multivariate Normal and Student’s t Methods. doi:10.
32614/CRAN.package.mvnfast. R package version 0.2.8.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

Jordan M, Lee J, Yang Y (2018). “Communication-Efficient Distributed Statistical Inference.”
Journal of the American Statistical Association, 114, 668–681. doi:10.1080/01621459.
2018.1429274.

Li R, Huang L, Dziak J (2022). VariableScreening: High-Dimensional Screening for Semi-
parametric Longitudinal Regression. doi:10.32614/CRAN.package.VariableScreening.
R package version 0.2.1.

Li R, Zhong W, Zhu L (2012). “Feature Screening via Distance Correlation Learning.” Journal
of the American Statistical Association, 107(499), 1129–1139. doi:10.1080/01621459.
2012.695654.

Li X, Li R, Xia Z, Xu C (2020). “Distributed Feature Screening via Componentwise Debias-
ing.” Journal of Machine Learning Research, 21(24), 1–32.

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1093/biomet/asn034
https://doi.org/10.1186/s12859-019-2611-1
https://doi.org/10.1109/tit.2006.871582
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1214/10-aos798
https://doi.org/10.32614/CRAN.package.mvnfast
https://doi.org/10.32614/CRAN.package.mvnfast
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/01621459.2018.1429274
https://doi.org/10.1080/01621459.2018.1429274
https://doi.org/10.32614/CRAN.package.VariableScreening
https://doi.org/10.1080/01621459.2012.695654
https://doi.org/10.1080/01621459.2012.695654

28 SMLE: Joint Feature Screening in Ultrahigh-dimensional GLMs in R

Liu J, Zhong W, Li R (2015). “A Selective Overview of Feature Screening for
Ultrahigh-Dimensional Data.” Science China Mathematics, 58(10), 1–22. doi:10.1007/
s11425-015-5062-9.

Nelder JA, Wedderburn RWM (1972). “Generalized Linear Models.” Journal of the Royal
Statistical Society A, 135(3), 370–384. doi:10.2307/2344614.

Novomestky F (2022). matrixcalc: Collection of Functions for Matrix Calculations. doi:
10.32614/CRAN.package.matrixcalc. R package version 1.0-6.

Qu L, Hao M, Sun L (2022). “Sparse Composite Quantile Regression with Ultra-High Dimen-
sional Heterogeneous Data.” Statistica Sinica, 32, 459–475. doi:10.5705/ss.202020.0115.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://www.R-project.org/.

Saldana DF, Feng Y (2018). “SIS: An R Package for Sure Independence Screening in
Ultrahigh-Dimensional Statistical Models.” Journal of Statistical Software, 83(2), 1–25.
doi:10.18637/jss.v083.i02.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Sun X, He Y, Wu D, Huang J (2023). “Survey of Distributed Computing Frameworks for
Supporting Big Data Analysis.” Big Data Mining and Analytics, 6, 154–169. doi:10.
26599/bdma.2022.9020014.

The 1000 Genomes Project Consortium (2015). “A Global Reference for Human Genetic
Variation.” Nature, 526(7571), 68–74. doi:10.1038/nature11632.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society B, 58(1), 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x.

Turner S (2018). “qqman: An R Package for Visualizing GWAS Results Using Q-Q and
Manhattan Plots.” The Journal of Open Source Software. doi:10.21105/joss.00731.

Wang H (2009). “Forward Regression for Ultra-High Dimensional Variable Screening.” Journal
of the American Statistical Association, 104(488), 1512–1524. doi:10.1198/jasa.2008.
tm08516.

Wu Y, Yin G (2015). “Conditional Quantile Screening in Ultrahigh-Dimensional Heteroge-
neous Data.” Biometrika, 102(1), 65–76. doi:10.1093/biomet/asu068.

Xu C, Chen J (2014). “The Sparse MLE for Ultrahigh-Dimensional Feature Screening.” Jour-
nal of the American Statistical Association, 109(507), 1257–1269. doi:10.1080/01621459.
2013.879531.

Yang G, Hou S, Wang L, Sun Y (2018). “Feature Screening in Ultrahigh-Dimensional Additive
Cox Model.” Journal of Statistical Computation and Simulation, 88(6), 1117–1133. doi:
10.1080/00949655.2017.1422127.

https://doi.org/10.1007/s11425-015-5062-9
https://doi.org/10.1007/s11425-015-5062-9
https://doi.org/10.2307/2344614
https://doi.org/10.32614/CRAN.package.matrixcalc
https://doi.org/10.32614/CRAN.package.matrixcalc
https://doi.org/10.5705/ss.202020.0115
https://doi.org/10.32614/R.manuals
https://www.R-project.org/
https://doi.org/10.18637/jss.v083.i02
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.26599/bdma.2022.9020014
https://doi.org/10.26599/bdma.2022.9020014
https://doi.org/10.1038/nature11632
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.21105/joss.00731
https://doi.org/10.1198/jasa.2008.tm08516
https://doi.org/10.1198/jasa.2008.tm08516
https://doi.org/10.1093/biomet/asu068
https://doi.org/10.1080/01621459.2013.879531
https://doi.org/10.1080/01621459.2013.879531
https://doi.org/10.1080/00949655.2017.1422127
https://doi.org/10.1080/00949655.2017.1422127

Journal of Statistical Software 29

Yang G, Yu Y, Li R, Buu A (2016). “Feature Screening in Ultrahigh Dimensional Cox’s
Model.” Statistica Sinica, 26(3), 881–901. doi:10.5705/ss.2014.171.

Zang Q, Xu C, Burkett K (2026). SMLE: An R Package for Joint Feature Screening in
Ultrahigh-Dimensional GLMs. doi:10.32614/CRAN.package.SMLE. R package version 2.2-
3.

Zhou T, Zhu L, Xu C, Li R (2020). “Model-Free Forward Screening via Cumulative Di-
vergence.” Journal of the American Statistical Association, 115(531), 1393–1405. doi:
10.1080/01621459.2019.1632078.

Zhu J, Wang X, Hu L, Huang J, Jiang K, Zhang Y, Lin S, Zhu J (2022). “abess: A Fast
Best-Subset Selection Library in Python and R.” Journal of Machine Learning Research,
23(202), 1–7.

Zhu J, Wen C, Zhu J, Zhang H, Wang X (2020). “A Polynomial Algorithm for Best-Subset
Selection Problem.” Proceedings of the National Academy of Sciences of the United States
of America, 117(52), 33117–33123. doi:10.1073/pnas.2014241117.

Zhu L, Li L, Li R, Zhu L (2011). “Model-Free Feature Screening for Ultrahigh-Dimensional
Data.” Journal of the American Statistical Association, 106(496), 1464–1475. doi:10.
1198/jasa.2011.tm10563.

Affiliation:
Qianxiang Zang, Kelly Burkett
Department of Mathematics and Statistics
Faculty of Science
University of Ottawa, Ontario, Canada
E-mail: qzang023@uottawa.ca, kburkett@uottawa.ca

Chen Xu
Department of Mathematics and Fundamental Research
Pengcheng Laboratory, Shenzhen, China &
School of Mathematics and Statistics,
Xi’an Jiaotong University, Xi’an, China
Email: cx3@xjtu.edu.cn

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

December 2025, Volume 115, Issue 8 Submitted: 2023-01-23
doi:10.18637/jss.v115.i08 Accepted: 2025-02-28

https://doi.org/10.5705/ss.2014.171
https://doi.org/10.32614/CRAN.package.SMLE
https://doi.org/10.1080/01621459.2019.1632078
https://doi.org/10.1080/01621459.2019.1632078
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1198/jasa.2011.tm10563
https://doi.org/10.1198/jasa.2011.tm10563
mailto:qzang023@uottawa.ca
mailto:kburkett@uottawa.ca
mailto:cx3@xjtu.edu.cn
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v115.i08

	Introduction
	The SMLE method
	Notation and problem setup
	The SMLE-screening and IHT algorithm
	Post-screening selection with SMLE

	Implementation details
	SMLE work flow
	Main functions and arguments
	Simulating ultrahigh-dimensional GLM data
	Joint feature screening
	Post-screening selection
	Plotting
	Prediction
	Additional functions for regression-based objects

	Examples
	Demo code for SMLE-screening
	Screening performance
	Impacts of initialization
	Application to high-dimensional genetic data

	Concluding remarks

