
JSS Journal of Statistical Software
December 2025, Volume 115, Issue 9. doi: 10.18637/jss.v115.i09

counterfactuals: An R Package for Counterfactual
Explanation Methods

Susanne Dandl
LMU Munich

MCML

Andreas Hofheinz
LMU Munich

Martin Binder
LMU Munich

MCML

Bernd Bischl
LMU Munich

MCML

Giuseppe Casalicchio
LMU Munich

MCML

Abstract

Counterfactual explanation methods provide information on how feature values of
individual observations must be changed to obtain a desired prediction. Despite the in-
creasing amount of proposed methods in research, only a few implementations exist, whose
interfaces and requirements vary widely. In this work, we introduce the counterfactuals
R package, which provides a modular and unified R6-based interface for counterfactual
explanation methods. We implemented three existing counterfactual explanation meth-
ods and propose some optional methodological extensions to generalize these methods
to different scenarios and to make them more comparable. We explain the structure and
workflow of the package using real use cases and show how to integrate additional counter-
factual explanation methods into the package. In addition, we compared the implemented
methods for a variety of models and datasets with regard to the quality of their counter-
factual explanations and their runtime behavior.

Keywords: counterfactual explanations, interpretable machine learning, R.

1. Introduction and related work
In recent years, counterfactual explanation methods have emerged as valuable techniques for
explaining single predictions of black-box models. Denied loan applications serve as a common
example; here, a counterfactual explanation (or counterfactual for short) could be: “You were
denied a loan because your annual income was £30,000. If your income had been £45,000, you
would have been offered a loan” (Wachter, Mittelstadt, and Russell 2018). More generally,

https://doi.org/10.18637/jss.v115.i09
https://orcid.org/0000-0003-4324-4163
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-5324-5966

2 counterfactuals: Counterfactual Explanation Methods in R

counterfactuals address questions of the form: “For input x⋆, the model predicted y. What
needs to be changed in x⋆ so that the model predicts a desired outcome y′ instead?” One
advantage of counterfactuals is their human-friendly interpretability: As they simply suggest
feature changes to obtain a desired outcome, they are comprehensible even to non-experts
(Molnar 2022).
Most methods for generating counterfactual explanations do not consider causal relationships
(Verma, Boonsanong, Hoang, Hines, Dickerson, and Shah 2022). Counterfactual explanations,
therefore, differ from the counterfactuals in the causality literature (Pearl 2009; Lewis 1973).
As Baron (2023) showed, they can nevertheless be useful, e.g., to understand which features
locally affect a prediction (e.g., income) and why a model made a certain decision (e.g., the
income was too low). They can also help to identify biased or inaccurate decisions when
the explanations are compared with the user’s domain/causal knowledge (Wachter et al.
2018). For example, changes in gender or a lower income should not lead to a loan offer,
but if these changes are suggested by the counterfactual, this may indicate a biased model.
Counterfactual explanations that do not consider causal relations are, in general, not suitable
for recourse, i.e., recommendations to achieve a desired output in the future. For recourse,
we are interested in the effects of real-world actions, and thus, the causal relationships must
be taken into account (Karimi, Schölkopf, and Valera 2021; König, Freiesleben, and Grosse-
Wentrup 2023). For example, a counterfactual suggesting changes in income only implies a
favorable prediction if all other features are left unchanged; in the real world, changing the
income does not happen in isolation but, for example, as an effect of changing the position
and due to increased experience which might be reflected in a higher age of the applicant.
Absent causal knowledge, counterfactuals may, nevertheless, hint at the directions one should
develop, although they might not fully explain how to get there (Ustun, Spangher, and Liu
2019).
There are several ways to change features to obtain a desired outcome, but not all of them
are feasible. Therefore, counterfactual methods that provide multiple (reasonable) counter-
factuals and allow the user to assess their usefulness using domain knowledge are preferable
(Dandl, Molnar, Binder, and Bischl 2020b). Counterfactual explanations are related to ad-
versarial examples (Szegedy et al. 2014), but the latter aim to deceive a model instead of
explaining it (Freiesleben 2021).
Over the past few years, a variety of counterfactual explanation methods have been proposed.
Overviews are given in Verma et al. (2022), Karimi et al. (2021), and Stepin, Alonso, Catala,
and Pereira-Fariña (2021). Most of the methods focus on classification models and use either
optimization techniques or heuristic rules to search for counterfactuals. Existing methods
are either model-specific in the sense that they are only applicable to certain model classes
(e.g., linear or tree-based models) or model-agnostic, i.e., they are applicable to arbitrary
models. Furthermore, the methods differ in whether and to what extent access to the un-
derlying data is necessary, the number of counterfactuals they return, and the properties of
counterfactuals targeted by a method (e.g., sparsity or actionability). We will present the
most frequently targeted properties in Definition 1.
Despite the increasing amount of proposed counterfactual methods in research, the current
software landscape is rather sparse. To the best of our knowledge, the only counterfactual
methods available in R (R Core Team 2025) as dedicated packages are the multi-objective
counterfactual explanation method (MOC, Dandl et al. 2020b; Dandl, Molnar, and Binder
2020a) and feature tweaking (Tolomei, Silvestri, Haines, and Lalmas 2017; Kato 2018). Fea-

Journal of Statistical Software 3

ture tweaking is a model-specific method tailored to random forests and its R implementation
only allows forests specifically trained with the randomForest package (Liaw and Wiener
2002). In contrast, MOC is a model-agnostic method and its implementation allows all re-
gression or classification models fitted with popular toolboxes such as caret (Kuhn 2008) and
mlr3 (Lang et al. 2019). Models of other packages can also be processed using a wrapper func-
tion. In Python (Van Rossum and Drake Jr 1995), the CARLA library (Pawelczyk, Bielawski,
Van den Heuvel, Richter, and Kasneci 2021) provides a variety of (model-agnostic and model-
specific) counterfactual explanation methods for classification models. CARLA currently calls
the original Python implementations of the methods, which often only allow models of spe-
cific ML libraries as an input. Furthermore, a library for the model-agnostic nearest instance
counterfactual explanations method (NICE, Brughmans, Leyman, and Martens 2023; Brugh-
mans 2021) exists which could process all models fitted with scikit-learn (Pedregosa et al.
2011). Implementations of the methods MACE (Karimi, Barthe, Balle, and Valera 2020),
MINT (Karimi et al. 2021), and LORE (Guidotti, Monreale, Ruggieri, Pedreschi, Turini, and
Giannotti 2018) are available (Karimi and Mohammadi 2021; Guidotti 2018), but these are
only meant to reproduce the experiments of the original paper, and are therefore limited to
certain datasets and models. Apart from MOC, the mentioned methods are not able to return
multiple counterfactuals (in a run).
In summary, existing implementations are predominantly available in Python in different
repositories or libraries and at different stages of development. R users can only access a
limited number of methods, and the usability and comparability of these methods are severely
limited because there is no common user interface. Most Python libraries only allow methods
for classification models and focus primarily on methods returning a single counterfactual.

Contributions. With the counterfactuals package, we offer the first R package that pro-
vides a user-friendly and unified interface for model-specific as well as model-agnostic coun-
terfactual explanation methods. Therefore, it complements other R-based toolkits for inter-
preting machine learning models such as iml (Molnar 2022) and DALEX (Biecek 2018). The
package provides common functionalities to evaluate and visualize counterfactuals of diverse
methods. It is flexible enough to be easily extended by other counterfactual methods for
classification or regression models. Currently, the package provides three counterfactual ex-
planations methods. We discuss some (optional) extensions we have made to these methods:
first, to generalize them to diverse scenarios (for example, to regression models or multiclass
classifiers), and second, to improve their comparability, for example, by letting the two meth-
ods that return only one counterfactual, return several ones just like the third method. Our
work is therefore one of the few that explicitly advocate methods that simultaneously gener-
ate multiple, qualitatively comparable counterfactuals rather than a single one. We are also
among the first to provide an evaluation approach for sets of counterfactuals of different sizes
by comparing the three implemented methods in a benchmark study. In contrast, previous
work primarily focused on one counterfactual per method (de Oliveira and Martens 2021;
Pawelczyk et al. 2021; Moreira, Chou, Hsieh, Ouyang, Jorge, and Pereira 2022). Because
the package and benchmark study code are openly available, we encourage readers to add
counterfactual approaches to our R package and compare them to the ones that have already
been implemented.
In the upcoming section, we present the three currently implemented methods. In Section 3,
we explain the overall structure and handling of the package as well as its most important

4 counterfactuals: Counterfactual Explanation Methods in R

functionalities. We present use cases for a regression and classification task to show the main
functionalities of the package in Section 4, followed by an example in Section 5 illustrating
how additional counterfactual explanation methods can be easily integrated into our package.
In Section 6, we show the general setup and results of the benchmark study. We summarize
our findings as well as open questions in Section 7.

2. Methodological background and extensions
Our definition of counterfactual explanations is based on the work of Dandl et al. (2020b)
and Verma et al. (2022).
Definition 1 (Counterfactual explanation). Let f̂ : X → R be a prediction function with X
as the p-dimensional feature space. While our definition naturally covers regression models,
for classification tasks, we assume that f̂ returns the score or probability for a predefined
class of interest, usually the so-called positive class. Let further X := (x(1), . . . , x(n)) with
x(i) ∈ X , i ∈ {1, . . . , n} be the observed data and Y ′ = [Y ′

l , Y ′
u] be an interval of desired

predictions. We define a point x as a counterfactual explanation for an observation x⋆ if x
fulfills (at least some of) the following desired properties:

i Validity: x leads to a desired prediction, i.e., f̂(x) ∈ Y ′. This could be assessed, e.g., by
(Dandl et al. 2020b)

ovalid
(
f̂(x), Y ′

)
=

{
0, if f̂(x) ∈ Y ′

miny′∈Y ′

∣∣∣f̂(x) − y′
∣∣∣ , otherwise . (1)

ii Proximity: x is close to x⋆, which could be measured, e.g., by the Gower distance dG

(Gower 1971) for mixed feature spaces

oprox (x, x⋆) = dG(x, x⋆) := 1
p

p∑
j=1

δG

(
xj , x⋆

j

)
∈ [0, 1] (2)

with

δG(xj , x⋆
j) =


1

R̂j

∣∣∣xj − x⋆
j

∣∣∣ if xj is numerical
Ixj ̸=x⋆

j
if xj is categorical

where R̂j = max(Xj) − min(Xj) is the value range of feature j in X.

iii Sparsity: x differs from x⋆ in only a few features. This can be measured by the L0 norm

osparse (x, x⋆) = ∥x − x⋆∥0 =
p∑

j=1
Ixj ̸=x⋆

j
. (3)

iv Plausibility: x is realistic, i.e., close to the data manifold. Metrics are the (weighted)
Gower distance to the k closest training samples x[1], . . . , x[k] ∈ X (Dandl et al. 2020b)

oplaus (x, X) =
k∑

i=1
w[i]dG

(
x[i], x

)
∈ [0, 1] where

k∑
i=1

w[i] = 1 (4)

or the reconstruction error of a variational autoencoder (VAE) trained on the training
samples (Brughmans et al. 2023).

Journal of Statistical Software 5

v Actionability: x does not alter immutable features (e.g., country of birth) and only pro-
poses changes within an actionable range (e.g., non-negative age).

vi Causality: x reflects the underlying causal structure and takes causal relations of features
into account. This property could be only examined if the causal graph (Pearl 2009) is (at
least partially) known (Karimi et al. 2020, 2021; Mahajan, Tan, and Sharma 2020). Since
this is rarely the case, most counterfactual methods (including the ones implemented in
the counterfactuals package) disregard this property (Verma et al. 2022).

While some desired properties have a common tendency, others are rather opposed: if an
explanation is sparse (iii), it also tends to be proximal (ii), since a counterfactual tends
to be close to the original data point when only a few features are changed. However, a
counterfactual that is close to the original data point tends to have a similar prediction,
which may be far from a desired prediction, thus making the counterfactual less valid (i).
The exact interdependence between the properties depends on the prevailing circumstances.
Existing counterfactual methods vary in the desired properties they consider and how they
measure and optimize them. An overview of methods is given in Verma et al. (2022). The
methods also vary in whether a single counterfactual or a set of diverse ones is generated for
an x⋆. We argue that a set of counterfactuals is more valuable than a single one. This is
because there could exist different equally good counterfactuals with the desired prediction
(Rashomon effect, see Breiman 2001) and it is more likely that a set contains a counterfactual
that satisfies a user’s (hidden) preferences (Dandl et al. 2020b).
Below, we introduce the three counterfactual methods currently available in the counterfac-
tuals package: MOC (Dandl et al. 2020b), the What-If tool (WhatIf, Wexler, Pushkarna,
Bolukbasi, Wattenberg, Viégas, and Wilson 2019), and NICE (Brughmans et al. 2023). By
addressing their limitations, we motivate optional extensions of the methods that we imple-
mented in our package. In particular, these extensions enable all methods to return multiple
counterfactuals for binary and multiclass classification models, as well as regression models.

2.1. Multi-objective counterfactual explanations

Original method

MOC by Dandl et al. (2020b) searches for counterfactuals by solving a multi-objective mini-
mization problem

min
x

o(x) := min
x

(
ovalid(f̂(x), Y ′), oprox (x, x⋆) , osparse (x, x⋆) , oplaus(x, X)

)
. (5)

The single objectives correspond to the desired properties validity, proximity, sparsity, and
plausibility formalized in Equations 1 to 4 as part of Definition 1. MOC also considers
actionability by allowing the specification of “fixed features” that remain unchanged and of
alteration ranges for continuous features.
To tackle the optimization problem in Equation 5, MOC uses a customized version of the
non-dominated sorting genetic algorithm (NSGA-II) of Deb, Pratap, Agarwal, and Meyarivan
(2002): unlike the original algorithm, MOC employs mixed-integer evolution strategies (Li
et al. 2013) to handle mixed feature spaces and computes the crowding distance not only in

6 counterfactuals: Counterfactual Explanation Methods in R

the objective space but also in the feature space. A description of the steps of the algorithm
as implemented in the counterfactuals package is given in Algorithm 1 in Appendix A.
The algorithm first initializes a population. The authors proposed several strategies:

• Random: Feature values of new individuals are sampled uniformly from the range of
observed values. Subsequently, some features are randomly reset to their initial value
in x⋆ to induce sparsity.

• ICE curve: As for the “random” strategy, feature values are sampled from the range
of observed values. Then, however, features are reset with probabilities relative to
their feature importance: the higher the importance of a feature xj , the higher the
probability that its values differ from x⋆

j . The importance of one feature is measured
using the standard deviation of its corresponding individual conditional expectation
(ICE) curve (Goldstein, Kapelner, Bleich, and Pitkin 2015).

• Standard deviation: This method is similar to “random”, except that the sample ranges
of numerical features are limited to one standard deviation from their value in x⋆.

• Training data: Contrary to the other strategies, individuals are drawn from non-
dominated previous observations in the dataset. If insufficient observations are avail-
able, the remaining individuals are initialized by random sampling. Subsequently, some
features are randomly reset to their initial value in x⋆.

Dandl et al. (2020b) discussed only the first two strategies in their paper, although the third
and fourth strategies were also available in their implementation (Dandl et al. 2020a). In
subsequent generations, the algorithm recombines and mutates individuals of the population
and their features with predefined probabilities so that the initial population evolves. For
mutation, the authors state two approaches: the first is to apply a scaled Gaussian mutator
to numerical features and a uniform discrete mutator to categorical features (Li et al. 2013);
the second approach aims to take feature distributions into account by sampling conditionally
on the other feature values using a transformation tree (Hothorn and Zeileis 2021).
After recombination and mutation, some features are randomly reset to their initial value
in x⋆ with prespecified probabilities to induce sparsity. The recombination and mutation
steps in the algorithm can be customized via multiple control parameters. An overview is
given in Appendix B.2. To emphasize validity (i), individuals whose prediction exceeds a
specified target distance ϵ ∈ R≥0 can be penalized using the approach of Deb et al. (2002).
MOC terminates either after a prespecified number of generations or when the hypervolume
(HV) indicator (Zitzler and Thiele 1998) of the objectives in (5) does not improve for a
prespecified number of consecutive generations. As counterfactuals, MOC returns all (unique)
non-dominated individuals across all generations.
Contrary to most other methods, MOC is inherently applicable to both classification and
regression tasks. Moreover, MOC does not require the user to weigh the objectives a priori
and thus avoids the risk of arbitrarily affecting the solution set. Instead, it returns a Pareto
set of counterfactuals so that the objectives can be weighted a posteriori.

Modifications
We did not rely on the previous implementation of MOC on Github (Dandl et al. 2020a).
Instead, we reimplemented an updated version of MOC: we replaced the NSGA-II implemen-

Journal of Statistical Software 7

tation in mosmafs (Binder, Dandl, and Moosbauer 2020) with its extended and more versatile
successor miesmuschel (Binder, Schneider, Dandl, and Hofheinz 2023), and parameter spaces
are now defined by the paradox package (Lang, Bischl, Richter, Sun, and Binder 2023) instead
of ParamHelpers (Bischl, Lang, Richter, Bossek, Horn, and Kerschke 2020).

2.2. WhatIf

Original method

WhatIf is the counterfactual method for classification models proposed by Wexler et al. (2019)
as part of the What-If Tool (https://pair-code.github.io/what-if-tool/). Wexler et al.
(2019) assume that the underlying model ĥ : X → Y predicts a class label. They define
the set of desired predictions Y ′ as the set of all labels other than the current one. As a
counterfactual x′ for an observation x⋆, WhatIf returns the data point most similar to x⋆

from previous observations X̃ = {x ∈ X : ĥ(x) ̸= ĥ(x⋆)} whose predicted class is different
from that of x⋆. This leads to the minimization problem:

x′ ∈ argmin
x∈X̃

d(x, x⋆). (6)

The function d is a slightly adapted version of the Gower distance (Equation 2): for numerical
features, the authors scale the distances with the standard deviations σ̂j ; for categorical
features, the feature distances are set equal “to the probability that any two examples across
the entire dataset would share the same value for that feature” if their values differ, and
0 otherwise (Wexler et al. 2019). By definition, WhatIf aims for valid (i), proximal (ii),
and plausible (iv) counterfactuals. WhatIf often serves as a baseline method in benchmark
studies (Dandl et al. 2020b; Schleich, Geng, Zhang, and Suciu 2021; Carreira-Perpiñán and
Hada 2021) because it is easily implementable and adaptable.

Modifications

For better comparability with MOC, we use the original Gower distance as the default for
d in the counterfactuals package. We allow users to replace this with other dissimilarity
measures (see Section 4.2). We also extended the method to work with f̂ that returns the
probability of a prespecified class of interest for classification tasks instead of a hard label
classifier ĥ. This allows us to define the set of desired predictions Y ′ as a probability interval
[Y ′

l , Y ′
u] ⊆ [0, 1]. Additionally, our approach makes WhatIf applicable to regression tasks

without further modifications. In this case, Y ′ can simply be any real interval. X̃ is then
redefined as X̃ = {x ∈ X : f̂(x) ∈ Y ′}.
As argued in Section 1, methods that can find multiple counterfactuals for a single observation
are preferable. Therefore, we implemented an extended WhatIf version that returns the l ∈ N
closest data points of X̃ to x⋆ with the desired prediction. This is equivalent to minimizing
the following objective instead of (6)

{x′
1, . . . , x′

l} ∈ argmin
Z⊆X̃, |Z|=l

∑
z∈Z

dG(z, x⋆). (7)

https://pair-code.github.io/what-if-tool/

8 counterfactuals: Counterfactual Explanation Methods in R

2.3. Nearest instance counterfactual explanations

Original method

NICE introduced by Brughmans et al. (2023) is a counterfactual explanation method for
binary score classifiers f̂ : X → [−1, 1]. Accordingly, they define the set of desired predictions
Y ′ as the set of all scores that lead to a different class than the current one. NICE starts
the counterfactual search for an observation x⋆ by finding its most similar instance xnn for
which a class other than x⋆ was correctly predicted. Brughmans et al. (2023) assess similarity
by the heterogeneous Euclidean overlap method (Wilson and Martinez 1997) with L1-norm
aggregation, which corresponds to the Gower distance without averaging (i.e., Equation 2
without 1

p).
Once xnn is found, NICE generates new instances in the first iteration (m = 1) by replacing
single feature values of x⋆ with the corresponding value of xnn. NICE evaluates the created
instances with a reward function that optimizes either sparsity, proximity, or plausibility (see
Equations (2)-(4) in Brughmans et al. 2023, for details).
If the prediction of the instance with the highest reward value is in Y ′, the algorithm termi-
nates and returns this instance as a counterfactual. Otherwise, NICE creates new instances
in the next iteration by replacing single feature values of the best performing instance of the
previous iteration with the corresponding value of xnn. The search continues as long as the
prediction for the highest reward value instance is not in Y ′.

Modifications

We generalized NICE for regression models and multiclass classifiers: first, we extend f̂ to
predict real-values (regression) or the probability of a predefined class k, respectively (see
Definition 1). Second, we conceptualize the search for xnn as the following minimization
problem:

xnn = argmin
x∈X̊′

oprox(x, x⋆) (8)

with oprox as defined in Equation 2. For classification, X̊′ = {x ∈ X : f̂(x) ∈ Y ′∧h(f̂(x)) = y}
is the set of all correctly classified observations whose prediction is in the set of desired
predictions Y ′. y is the true class label of x and h(·) is a transformation function that maps
class scores onto class labels. For regression, X̊′ = {x ∈ X : f̂(x) ∈ Y ′ ∧ |f̂(x) − y| ≤ ϵ} is the
set of all observations with a prediction in the desired real interval Y ′ and a prediction error
of less than a user-specified ϵ ∈ R≥0. Similar to WhatIf, oprox in Equation 8 could be replaced
with user-defined distance measures in our implementation (demonstrated in Section 4.2).
The whole process after finding xnn is already applicable to both multiclass classification and
regression tasks. We only updated the proposed reward functions for an iteration m to

RO(x) = ovalid(f̂(xm−1,Rmax), Y ′) − ovalid(f̂(x), Y ′)
O(x, xm−1,Rmax | x⋆) , (9)

where xi−1,Rmax is the highest reward instance of the previous iteration (m − 1), and ovalid
is defined in Equation 1. The denominator O(·, ·) corresponds to the originally proposed
functions aiming at sparsity, proximity, or plausibility (see Equations 2–4 in Brughmans
et al. 2023).

Journal of Statistical Software 9

Although multiple instances could have the desired prediction (and similar reward values),
the original NICE algorithm only returns a single counterfactual. In the counterfactuals
package, we implemented two (optional) extensions that enable NICE to return multiple
counterfactuals. Our first extension returns all created instances (from all iterations) with
a desired prediction as counterfactuals after termination. Our second extension does not
terminate when the prediction of the highest reward instance is in the desired interval. Instead,
it continues until xnn is recreated. This leads to a total number of (d2+d)/2 created instances,
where d is the number of feature values that differ between x⋆ and xnn. Like our first
extension, it then returns all created instances with a desired prediction as counterfactuals.
Compared to counterfactuals in earlier iterations, a counterfactual created in a later iteration
is inferior w.r.t. proximity (ii) and sparsity (iii) (as more feature values are changed), but may
be superior w.r.t. plausibility (iv). The pseudocode of our modified NICE version is shown
in Algorithm 2 in Appendix A.
In contrast to MOC, NICE does not consider all the desired counterfactual properties (listed
in Definition 1) simultaneously: while NICE guarantees validity by design (provided that
a correctly classified observation with a desired prediction exists), the user must prioritize
the other desired properties under the given circumstances and choose the reward function
accordingly. If there is no clear preference for the properties a priori, we recommend running
our second NICE extension for each of the reward functions, combining the counterfactuals,
removing duplicates, and evaluating the remaining counterfactuals a posteriori. We chose
this strategy for our benchmark study in Section 6.
A not yet implemented extension is to set lower and upper bounds on xnn to constrain the fea-
ture values of the counterfactuals, enhancing their actionability (v). Another extension would
be to run the algorithm multiple times, defining xnn in the l-th run as the l-th most similar
(correctly classified) data point of x⋆, which increases the diversity of the counterfactuals.

3. counterfactuals R package

In this section, we introduce the counterfactuals R package and explain its structure and
workflow. The package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=counterfactuals (Dandl, Hofheinz, Binder, and
Casalicchio 2026).
Inspired by the iml package (Molnar, Bischl, and Casalicchio 2018), each counterfactual
method described in the previous section is implemented in R6 classes (Chang 2021). Datasets
and counterfactuals are represented as data.table objects (Dowle and Srinivasan 2022) to
allow efficient data manipulations and computations. Depending on whether a counter-
factual method supports classification or regression tasks, its class inherits from the (ab-
stract) CounterfactualMethodClassif or CounterfactualMethodRegr R6 classes, respec-
tively. Counterfactual methods that support both tasks are split into two separate classes.
Figure 1 illustrates the inheritance structure. For instance, as MOC is applicable to classifica-
tion and regression tasks, we implemented two classes: MOCClassif and MOCRegr. Both classes
rely on the same (private) code base (moc_algo()) to generate counterfactuals to avoid code
repetitions. MOCClassif inherits features from its superclass CounterfactualMethodClassif,
while MOCRegr inherits from CounterfactualMethodRegr. Both of these superclasses in turn
have the CounterfactualMethod as their superclass.

https://CRAN.R-project.org/package=counterfactuals

10 counterfactuals: Counterfactual Explanation Methods in R

Figure 1: Inheritance diagram of the counterfactuals package; a more detailed version is
included in Appendix B.1.

Figure 2: Call graph of the counterfactuals package. The find_counterfactuals() method
(1) calls a private run() method – implemented by the leaf classes – which performs the
search and (2) returns the counterfactuals as a data.table; find_counterfactuals() then
(3) creates a Counterfactuals object, which contains the counterfactuals and provides several
methods for their evaluation and visualization.

To generate counterfactuals for an arbitrary model with a specific counterfactual explanation
method, the following steps are necessary: First, an iml::Predictor object which encap-
sulates a fitted model and the underlying data must be initialized. The Predictor object
is a wrapper for any machine learning model and ensures a unified interface and output for
model predictions. It offers the necessary flexibility to generate counterfactuals for mod-
els fitted with a variety of popular machine learning interfaces, e.g., fitted with the caret
(Kuhn 2008), mlr (Bischl et al. 2016), or mlr3 packages (Lang et al. 2019). We showcase this
in the upcoming sections and Appendix B.3. The instantiated Predictor object serves as
an input for the predictor field of the initialization method of the WhatIfClassif/-Regr,
MOCClassif/-Regr or NICEClassif/-Regr classes. Additionally, the user can change the pa-
rameters of the used methods when initializing the object – such as the mutation probability
for MOC or the used reward function for NICE. Overviews of the parameters are given in
Tables 2–4 in Appendix B.2.

Journal of Statistical Software 11

Counterfactuals are generated by calling the $find_counterfactuals() method of the ini-
tialized object inherited from the classes CounterfactualMethodClassif/-Regr. Figure 2
illustrates the internal call graph. As input, find_counterfactuals() requires the observa-
tion of interest x⋆ for which we seek counterfactuals as well as the desired prediction. The
method then calls the $run() method, which is implemented in the leaf classes, and creates
a Counterfactuals object that contains the generated counterfactuals.
How the computational burden scales with the number of observations and number of features
for the different methods is assessed in Section 6. Several tools are available to visualize
and evaluate the counterfactuals. They are showcased and explained in more detail in the
upcoming section. These tools are primarily based on the codebase underlying Dandl et al.
(2020b). More tools will be added in the future.

4. Use cases
In this section, we illustrate the counterfactuals workflow by applying MOC (Section 2.1)
to a classification task and our NICE extension (Section 2.3) to a regression task.

4.1. MOC applied to a classification task

As training data, we use the German Credit data set from the rchallenge package (Tode-
schini 2021).1 The dataset originally contains 20 features on credit and personal informa-
tion of 1000 bank customers. For illustrative purposes, we only consider the seven features:
duration, amount, purpose, age, employment_duration, housing, and number_credits.
The target variable credit_risk indicates whether a credit is a good/low or bad/high risk
for the bank.

R> library("counterfactuals")
R> library("iml")
R> library("randomForest")
R> data("german", package = "rchallenge")
R> credit <- german[, c("duration", "amount", "purpose", "age",
+ "employment_duration", "housing", "number_credits", "credit_risk")]

We train a random forest with the randomForest package (Liaw and Wiener 2002) to predict
the credit_risk. We omit observation 998 from the training data, which is x⋆, to imitate
the situation of finding counterfactuals for a new observation.2

R> set.seed(20210816)
R> rf <- randomForest(credit_risk ~ ., data = credit[-998L,])

An iml::Predictor object serves as a wrapper for different model types. It contains the
model and the data for its analysis. We set type = "prob" such that class probabilities
instead of hard labels are predicted. For our observation of interest x⋆ – denoted in the code
as x_interest – the model predicts a probability of being a good credit risk of 38.2%:

1The dataset was originally donated to UCI (Dua and Graff 2017) by Prof. Dr. Hofmann from Universität
Hamburg and was later corrected by Grömping (2019).

2This does not rule out the possibility to generate counterfactuals for training data points.

12 counterfactuals: Counterfactual Explanation Methods in R

R> predictor <- iml::Predictor$new(rf, type = "prob")
R> x_interest <- credit[998L,]
R> predictor$predict(x_interest)

bad good
1 0.618 0.382

Generation of counterfactuals

Now, we examine which risk factors must be changed to increase the predicted probability
of being a good credit risk to at least 60%. Since we want to apply MOC to a classification
model, we initialize a MOCClassif object. As explained in Section 2.1, individuals whose
prediction is farther away from the desired interval than a prespecified value epsilon can be
penalized. Here, we set epsilon = 0 to penalize all individuals whose prediction is outside
the desired interval. With the fixed_features argument, we fix the non-actionable features
age and employment_duration to the respective value of x⋆. By setting the termination
criterion to genstag, we stop once the HV indicator does not increase for n_generations =
10L consecutive generations. By setting quiet = TRUE, no information on the optimization
is printed.

R> moc_classif <- MOCClassif$new(predictor, epsilon = 0,
+ fixed_features = c("age", "employment_duration"),
+ termination_crit = "genstag", n_generations = 10L, quiet = TRUE)

We use the $find_counterfactuals() method to search for counterfactuals for x_interest.
As we aim to find counterfactuals with a predicted probability of being a good credit risk of
at least 60%, we set the desired_class to "good" and the desired_prob to c(0.6, 1); this
is equivalent to setting the desired_class to "bad" and desired_prob to c(0, 0.4).

R> cfactuals <- moc_classif$find_counterfactuals(x_interest,
+ desired_class = "good", desired_prob = c(0.6, 1))

The Counterfactuals object

The resulting Counterfactuals object holds the counterfactuals in the data field and pos-
sesses several methods for their evaluation and visualization. Printing a Counterfactuals
object gives an overview of the results. Overall, we generated 53 counterfactuals.

R> print(cfactuals)

53 Counterfactual(s)

Desired class: good
Desired predicted probability range: [0.6, 1]

Head:

Journal of Statistical Software 13

duration amount purpose age employment_duration housing number_credits
1: 21 7460 others 30 >= 7 yrs own 1
2: 21 7054 others 30 >= 7 yrs own 1
3: 21 6435 others 30 >= 7 yrs own 1

The $predict() method returns the predictions for the counterfactuals.

R> head(cfactuals$predict(), 3L)

bad good
1 0.322 0.678
2 0.318 0.682
3 0.296 0.704

The $evaluate() method returns the counterfactuals along with some predefined quality
measures dist_x_interest, no_changed, dist_train, and dist_target for the desired
properties proximity, sparsity, plausibility, and validity (listed in Definition 1). The quality
measures are equal to the objectives of MOC. Setting the show_diff argument to TRUE dis-
plays the counterfactuals as their difference from x_interest: for a numeric feature, positive
values indicate an increase compared to the feature value in x_interest and negative values
indicate a decrease; for factors, the feature value is displayed if it differs from x_interest;
NA means “no difference”.

R> head(cfactuals$evaluate(show_diff = TRUE, measures = c("dist_x_interest",
+ "dist_target", "no_changed", "dist_train")), 3L)

duration amount purpose age employment_duration housing number_credits
1: NA -5220 <NA> NA <NA> <NA> <NA>
2: NA -5626 <NA> NA <NA> <NA> <NA>
3: NA -6245 <NA> NA <NA> <NA> <NA>

dist_x_interest no_changed dist_train dist_target
1: 0.04103193 1 0.04215022 0
2: 0.04422330 1 0.03895885 0
3: 0.04908897 1 0.03409318 0

By design, there is no guarantee that all counterfactuals generated with MOC have a pre-
diction ∈ Y ′. Therefore, we use the $subset_to_valid() method to omit all non-valid
counterfactuals. The method $revert_subset_to_valid() can reverse this step.

R> cfactuals$subset_to_valid()
R> nrow(cfactuals$data)
[1] 22

Of the 53 counterfactuals, 22 have the desired predictions. To detect which features are
the most important levers to obtain a certain prediction, the relative frequency of feature
changes across all counterfactuals can be plotted via the $plot_freq_of_feature_changes()
method. Setting subset_zero = TRUE excludes all unchanged features from the plot. Fig-
ure 3 shows that all counterfactuals require changes in the credit amount.

14 counterfactuals: Counterfactual Explanation Methods in R

Figure 3: Relative frequency of feature changes across all counterfactuals. Features without
proposed changes are omitted.

Figure 4: Parallel plot along (standardized) features. The blue line represents x⋆

(x_interest), whereas gray lines represent generated counterfactuals.

R> cfactuals$plot_freq_of_feature_changes(subset_zero = TRUE)

The parallel plot (Figure 4) – created with the $plot_parallel() method – compares the
feature values of the counterfactuals among each other (one gray line per counterfactual) and
with x_interest (blue line). Equal to Dandl et al. (2020b), all features are scaled between
0 and 1. The argument feature_names filters the features and orders them, NULL means
“all”. Using $get_freq_of_feature_changes(), we order the features according to their
frequency of changes. The digits_min_max argument specifies the maximum number of
digits for plotted values. The default value is 2L. All counterfactuals propose a decrease in
the credit amount while the duration either needs no modifications, an increase or a decrease.
For one counterfactual, additionally, the purpose was set to a new car, the housing type was
set to rented and the number_credits was increased.

R> library(GGally)
R> cfactuals$plot_parallel(feature_names = names(
+ cfactuals$get_freq_of_feature_changes()), digits_min_max = 2L)

The $plot_surface() method generates prediction surface plots/2-dimensional ICE plots
(Dandl et al. 2020b). The method requires the names of two features (feature_names) as an
input. The white dot in Figure 5 represents x_interest. All counterfactuals that differ from
x_interest only in the two selected features (here, duration and amount) are displayed as
black dots. We observe that either a change in amount alone, or in amount and the duration

Journal of Statistical Software 15

Figure 5: Prediction surface plotted along features duration and amount. Other feature
values are held constant at x⋆. The white point displays x⋆. Black points are counterfactuals
with variations only in the two displayed features. Rugs represent marginal distributions of
the observed data.

is advocated. The rug lines next to the axes indicate the marginal distribution of the training
data. It should be noted that the multi-objective approach does not consider counterfactuals
farther away from x_interest as suboptimal because these counterfactuals outperform others
in their proximity to the observed data points (plausibility property (iv)).

R> cfactuals$plot_surface(feature_names = c("duration", "amount"))

MOC diagnostics
The aforementioned plotting and evaluation methods are part of the class Counterfactuals
and all counterfactuals created by MOC, WhatIf, or NICE can be evaluated with them. For
MOC, additional diagnostic tools are available. Since they are only applicable to MOC, they
cannot be called by the Counterfactuals class but rather by instances from the MOCClassif
and MOCRegr class after counterfactuals were generated. To evaluate the estimated Pareto
front, Dandl et al. (2020b) use a HV indicator (Zitzler and Thiele 1998) with reference point
s = (infy′∈Y ′ |f̂(x⋆)−y′|, 1, p, 1) representing the maximal values of the objectives (ovalid, oprox,
osparse, oplaus of Equations 1 to 4). The evolution of the HV indicator can be plotted together
with the evolution of mean and minimum objective values using the $plot_statistics()
method. The centered_obj argument allows the user to control whether the objective values
should be centered: if set to FALSE, each objective value is visualized in a separate plot, since
they (usually) have different scales; if set to TRUE (default), they are visualized in a single
plot, as shown in Figure 6.

R> moc_classif$plot_statistics(centered_obj = TRUE)

Ideally, the mean value of each objective decreases, while the HV increases over the genera-
tions. However, there is often a trade-off between the objectives in the sense that when the
mean value of one objective slightly decreases, it might slightly increase for another objective.
This trade-off is also visible in the scatter plot created with the $plot_search() method
that visualizes the values of two specified objectives of all emerged individuals. Ideally, one
would like to have a point shift to the lower-left corner over the generations, which implies
lower and thus better objective values.

16 counterfactuals: Counterfactual Explanation Methods in R

Figure 6: Evolution of the mean and minimum objective values together with the dominated
HV over the generations. The mean and minimum objective values were scaled between 0
and 1.

Figure 7: Evolution of the objectives dist_train and dist_target over the generations.

R> moc_classif$plot_search(objectives = c("dist_train", "dist_target"))

According to Figure 7, many counterfactuals have predictions in the desired prediction range
(dist_target = 0). However, many points for the objectives dist_train and dist_target
are also located in the middle region. This underlines the difficulty of minimizing both

Journal of Statistical Software 17

Figure 8: Evolution of the objectives dist_x_interest and dist_train over the generations.

objectives simultaneously. For the objectives dist_train and dist_x_interest (Figure 8),
on the other hand, there is a clearer shift to the lower-left corner over the generations. The
distinct boundary on the lower left indicates that the optimization potential for these two
objectives might be fully exploited.

R> moc_classif$plot_search(objectives = c("dist_x_interest", "dist_train"))

4.2. NICE applied to a regression task

Searching for counterfactuals for regression models works analogously to classification models.
In this example, we use our NICE extension for regression models to search for a counterfactual
for a predictor of plasma retinol concentration. This is interesting because low concentrations
are associated with an increased risk for some types of cancer (see Xie et al. (2019) for an
overview).
As training data, we use the plasma dataset (Nierenberg, Stukel, Baron, Dain, Greenberg, and
The Skin Cancer Prevention Study Group 1989) from the gamlss.data package (Stasinopou-
los, Rigby, and De Bastiani 2021). The dataset contains 315 observations with 13 features
describing personal and dietary factors (e.g., age, number of alcoholic drinks per week or the
measured plasma beta-carotene level) and the (continuous) target variable retplasma – the
plasma retinol concentration in ng/ml. We train a regression tree with the mlr3 package to
predict retplasma (Lang et al. 2019). We reserve the 100th row of the data for x⋆ – denoted
as x_interest.

R> library("mlr3")
R> data("plasma", package = "gamlss.data")
R> x_interest <- plasma[100L,]
R> tsk <- mlr3::TaskRegr$new(id = "plasma", backend = plasma[-100L,],
+ target = "retplasma")
R> tree <- lrn("regr.rpart")
R> model <- tree$train(tsk)

Then, we initialize an iml::Predictor object. For x_interest, the model predicts a plasma
concentration of 342.92 ng/ml.

R> predictor <- Predictor$new(model, data = plasma, y = "retplasma")
R> predictor$predict(x_interest)

18 counterfactuals: Counterfactual Explanation Methods in R

Figure 9: Prediction surface plotted along features betaplasma and age. Other feature values
are held constant at x⋆. The white point displays x⋆. Black points are counterfactuals with
variations only in the two displayed features. Rugs represent marginal distributions of the
observed data. White horizontal lines are plotting artifacts.

.prediction
1 342.9231

Since we want to apply NICE to a regression model, we initialize a NICERegr object. The
initial version of NICE restricted to classification models starts the search by finding the most
similar correctly classified data point. For regression models, we define a correctly predicted
data point when its prediction is less than a user-specified value (margin_correct) away
from the true outcome. In this example, we allow for a deviation of 0.5. The argument
optimization specifies the reward function we want to optimize. We aim for the most prox-
imal counterfactual by setting this argument to proximity and by setting return_multiple
to FALSE.
We call the $find_counterfactuals() method to search for counterfactuals for x_interest
with a predicted concentration of more than 500 ng/ml, i.e., a concentration in the interval
[500, Inf[.

R> nice_reg <- NICERegr$new(predictor, optimization = "proximity",
+ margin_correct = 0.5, return_multiple = FALSE)
R> cfactuals <- nice_reg$find_counterfactuals(x_interest,
+ desired_outcome = c(500, Inf))

The result is a Counterfactuals object, which we can analyze with the same methods as in
Section 4.1. The surface plot of plasma beta-carotene (betaplasma) and age (Figure 9), for
example, reveals that increasing the beta-carotene concentration (e.g., by eating more kale,
carrots, etc.) is sufficient for predicting a plasma concentration ≥ 500 ng/ml for x⋆, while
changing the age alone has no effect on the prediction.

R> cfactuals$plot_surface(feature_names = c("betaplasma", "age"),
+ grid_size = 200)

Journal of Statistical Software 19

User-defined distance function

As stated in Equation 8, NICE determines the most similar (correctly classified) data point
by minimizing the Gower distance. However, the input parameter distance_measure of the
initialization method of NICERegr (and NICEClassif) allows a different distance measure.
The parameter requires a function with arguments x, y, and data, that returns a numeric
matrix with number of rows and columns corresponding to the number of observations in x
and y, respectively. As an example, we replace the Gower function with the L0 norm. First,
we set up the function and illustrate its functionality in a short example.

R> l0_norm <- function(x, y, data) {
+ res <- matrix(NA, nrow = nrow(x), ncol = nrow(y))
+ for (i in seq_len(nrow(x))) {
+ for (j in seq_len(nrow(y))) {
+ res[i, j] <- sum(x[i,] != y[j,])
+ }
+ }
+ res
+ }
R> xt <- data.frame(a = 0.5, b = "a")
R> yt <- data.frame(a = c(0.5, 3.2, 0.1), b = c("a", "b", "a"))
R> l0_norm(xt, yt, data = NULL)

[,1] [,2] [,3]
[1,] 0 2 1

Next, we forward this function to the distance_function argument of NICERegr.

R> nice_reg <- NICERegr$new(predictor, optimization = "proximity",
+ margin_correct = 0.5, return_multiple = FALSE,
+ distance_function = l0_norm)
R> nice_reg$find_counterfactuals(x_interest, desired_outcome = c(500, Inf))

1 Counterfactual(s)

Desired outcome range: [500, Inf]

Head:
age sex smokstat bmi vituse calories fat fiber alcohol cholesterol

1: 46 1 3 35.26 3 2667.5 131.6 10.1 0 550.5
betadiet retdiet betaplasma

1: 1210 1291 218

The initialization methods of MOC and WhatIf also have a distance_function argument:
for MOC, its input replaces the Gower distances used for oprox and oplaus (Equations 2 & 4);
for WhatIf, its input replaces the Gower distance in Equation 7.

20 counterfactuals: Counterfactual Explanation Methods in R

5. Extending the package
We have designed the counterfactuals package to be quickly extensible by new methods. Here,
we illustrate how to add new methods to the package by integrating the featureTweakR pack-
age (Kato 2018), which implements feature tweaking (Tolomei et al. 2017), a counterfactual
method that can be applied to (classification) tree ensembles fitted with the randomForest
package. Feature tweaking starts the search for counterfactuals for an observation x⋆ by find-
ing all trees in the ensemble that do not predict the desired class. For each of these trees, it
attempts to change (or “tweak”) x⋆ as little as possible to switch the prediction of that tree to
the desired class. From all tweaked instances that also switch the ensemble prediction to the
desired class, it returns the tweaked instance that changes x⋆ the least as a counterfactual.
The featureTweakR package has various limitations, e.g., factors in the training data cause
problems or that it is only applicable to random forests trained on standardized features with
the randomForest package (Liaw and Wiener 2002). Due to these limitations, featureTweakR
is not part of the counterfactuals package but does serve as a suitable example here. First, we
install featureTweakR and its dependency pforeach (Makiyama 2015) and load the required
libraries.

R> devtools::install_github("katokohaku/featureTweakR")
R> devtools::install_github("hoxo-m/pforeach")
R> library("featureTweakR")
R> library("pforeach")
R> library("R6")

5.1. Class structure

At least two methods must be implemented for a new class: $initialize() and $run().
The $print_parameters() method is not mandatory but still strongly recommended, as
it gives objects of that class an informative print() output. As elaborated above, a new
class inherits from either CounterfactualMethodClassif or CounterfactualMethodRegr,
depending on which task it supports. Since feature tweaking supports classification tasks, the
new FeatureTweakerClassif class inherits from the former.

R> FeatureTweakerClassif <- R6::R6Class("FeatureTweakerClassif",
+ inherit = CounterfactualMethodClassif,
+ public = list(
+ initialize = function() {
+ }
+),
+ private = list(
+ run = function() {
+ },
+ print_parameters = function() {
+ }
+)
+)

Journal of Statistical Software 21

Implementation of the $initialize() method

In the next step, we implement the $initialize() method, which must have a predictor
argument that takes an iml::Predictor object. In addition, it may have further arguments
specific to the counterfactual method. Feature tweaking has the following hyperparameters:
ktree representing the number of trees to be considered, epsiron3 as the upper threshold of
feature changes, and resample indicating whether trees are randomly selected or not.

R> initialize <- function(predictor, ktree = NULL, epsiron = 0.1,
+ resample = FALSE) {
+ super$initialize(predictor)
+ private$ktree = ktree
+ private$epsiron = epsiron
+ private$resample = resample
+ }

We also fill the $print_parameters() method with the parameters of feature tweaking.

R> print_parameters <- function() {
+ cat(" - epsiron: ", private$epsiron, "\n")
+ cat(" - ktree: ", private$ktree, "\n")
+ cat(" - resample: ", private$resample)
+ }

Implementation of the $run() method

The $run() method performs the search for counterfactuals. Its structure is completely free,
which makes it flexible to add new counterfactual methods to the counterfactuals package.
The only requirement is that a data.table with the generated counterfactuals is returned at
the end. The columns display the features and rows the counterfactuals.
The $run() method is called by the method $find_counterfactuals() implemented in the
CounterfactualMethodClassif class. As shown in Section 4.1, $find_counterfactuals()
requires as input x_interest, desired_class, and desired_prob, which are saved in private
fields. Thus, $run() could directly access the information and preprocesses them before it
passes them on to the implemented methods of featureTweakR.
The workflow of finding counterfactuals for x_interest with the featureTweakR package for
a fitted random forest model rf consists of three steps: First, decision trees are transformed to
data frames of paths by getRules(). Then, set.eSatisfactory() generates new instances
by slightly altering feature values. Finally, tweak() generates counterfactuals for a specific
instance x⋆. Further information could be found in the documentation of the package (Kato
2018). The $run() method encapsulates these steps and returns a data.frame of generated
counterfactuals.

R> run <- function() {
+ predictor <- private$predictor
+ y_hat_interest <- predictor$predict(private$x_interest)

3Please note that this is not a typo on our part, but the naming in the original implementation (Kato 2018).

22 counterfactuals: Counterfactual Explanation Methods in R

+ class_x_interest <- names(y_hat_interest)[which.max(y_hat_interest)]
+ rf <- predictor$model
+
+ rules <- getRules(rf, ktree = private$ktree,

resample = private$resample)
+ es <- set.eSatisfactory(rules, epsiron = private$epsiron)
+ tweaks <- tweak(
+ es, rf, private$x_interest, label.from = class_x_interest,
+ label.to = private$desired_class, .dopar = FALSE
+)
+ return(tweaks$suggest)
+ }

The composite code of our new class can be seen in Appendix B.4.

5.2. Feature tweaking applied to a classification task
For demonstration purposes, we apply the implemented feature tweaking to the iris dataset
(Fisher 1936; Anderson 1936). We train a random forest on the dataset and set up the
iml::Predictor object, again omitting x_interest (here, row 150) from the training data.

R> set.seed(78546)
R> X <- subset(iris, select = -Species)[-150L,]
R> y <- iris$Species[-150L]
R> rf <- randomForest(X, y, ntree = 20L)
R> predictor <- iml::Predictor$new(rf, data = iris[-150L,],
+ y = "Species", type = "prob")

For x_interest, the model predicts a probability of 10% for versicolor.

R> x_interest <- iris[150L,]
R> predictor$predict(x_interest)

setosa versicolor virginica
1 0 0.1 0.9

Now, we use feature tweaking to address the question: “What changes in x_interest are
necessary for the model to predict a probability of at least 60% for versicolor?”.

R> ft_classif <- FeatureTweakerClassif$new(predictor, ktree = 10L,
+ resample = TRUE)
R> cfactuals <- ft_classif$find_counterfactuals(x_interest = x_interest,
+ desired_class = "versicolor", desired_prob = c(0.6, 1))

As for MOC and NICE, the result is a Counterfactuals object which could be visualized
and evaluated as shown in Section 4.1.

6. Benchmarking
In this section, we use a benchmark study to answer the following research questions:

Journal of Statistical Software 23

OpenML ID Name Obs Cont Cat
31 credit_g 1,000 7 13
37 diabetes 768 8 0
50 tic_tac_toe 958 0 9
725 bank8FM 8,192 8 0
1479 hill_valley 1,212 100 0
40922 run_or_walk_info 88,588 6 0

Table 1: Description of the OpenML datasets used for benchmarking. Obs displays the
number of observations, Cont the number of continuous features and Cat the number of
categorical features.

1. How do the different methods implemented in the counterfactuals R package perform
according to the properties validity (i), proximity (ii), sparsity (iii) and plausibility
(iv) of Definition 1, and according to the HV indicator and number of non-dominated
counterfactuals?

2. How do the methods differ in their runtime for an increasing number of observations
(n) and number of features (p)?

The overall design of our benchmark study is strongly inspired by the work of Dandl et al.
(2020b) who also compared different methods according to the four properties of Defini-
tion 1. Additionally, we evaluate the methods with regard to their runtime behavior and
HV. Furthermore, we added NICE as another comparison method. Since our source code is
openly available, (in the supplementary materials and at https://github.com/slds-lmu/
benchmark_2022_counterfactuals) we encourage readers to add other counterfactual meth-
ods to our R package and to compare them to the already implemented ones using our study
code.

6.1. Setup

We used six datasets from the OpenML platform (Vanschoren, Van Rijn, Bischl, and Torgo
2014) with binary classes, no missing values, and varying numbers of observations and fea-
tures. Table 1 provides an overview of the datasets. To study the runtime behavior, we
also ran all available methods on row-wise subsets (with differing number of observations
n ∈ {886 (1%), 8859 (10%), 88588 (100%)}) of the run_or_walk_info dataset and column-
wise subsets (with differing number of features p ∈ {10, 30, 100}) of the hill_valley dataset.
The subsets were randomly generated and identical for all models and methods.
On each dataset, we tuned and trained five models using the mlr3 R package (Lang et al.
2019): a random forest (ranger), an xgboost model, an RBF support vector machine (svm), a
logistic regression (logreg), and a neural network with one hidden layer (neuralnet).4 Before-
hand, we standardized numerical features and one-hot-encoded categorical ones. For tuning,
we employed random search with 30 evaluations and 5-fold cross-validation (CV) using the
misclassification error as a performance measure. Further details on the tuning search space
and the classification accuracies are given in Appendix C.1. Before training, we randomly
selected ten observations from each dataset as x⋆ and omitted them from the training data.

4For the hill_valley dataset with 100 features, two dense layers were used.

https://github.com/slds-lmu/benchmark_2022_counterfactuals
https://github.com/slds-lmu/benchmark_2022_counterfactuals

24 counterfactuals: Counterfactual Explanation Methods in R

For each x⋆, we set the desired class probability interval Y ′ to the opposite of the predicted
class (based on a threshold of 0.5):

Y ′ =
{

]0.5, 1] if f̂(x⋆) ≤ 0.5
[0, 0.5] else . (10)

For each dataset, model, and x⋆, we computed counterfactuals with WhatIf, NICE and MOC.
Apart from the stopping criterion, all MOC control parameters were set to their default values
selected through iterated F-racing (López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari, and
Stützle 2016) (see Appendix B.2). Notably, we used different datasets for tuning than for
the benchmark study. The stopping criterion was convergence of the HV over 10 generations,
with a total maximum of 500 generations. For all three counterfactual methods, we set the
distance_function to ‘gower_c’ – a C-based, more efficient version of Gower’s distance
based on the gower R package (Van der Loo 2022).
As stated in Section 2, we prefer a set of counterfactuals over a single one. MOC is designed
to return multiple counterfactuals and we also let NICE and WhatIf return multiple ones.
Therefore, the NICE control parameter finish_early was set to FALSE, corresponding to
our second NICE extension (Section 2.3). In addition, we computed counterfactuals for
each of the three different reward functions by varying the optimization hyperparameter
and combined them for a final set of counterfactuals, as recommended in Section 2.3. For
WhatIf, the number of counterfactuals was set to 10 via the n_counterfactuals parameter,
in accordance with Dandl et al. (2020b). All other NICE and WhatIf control parameters
(except the distance_function, see above) were set to their default values (Appendix B.2).
For the evaluation, we only considered the counterfactuals that (1) achieve the desired pre-
diction such that ovalid = 0 and (2) are not dominated by other counterfactuals produced
by the same method according to the remaining three objectives (oprox, osparse and oplaus).
By design of the three methods, criterion (1) always holds for counterfactuals of WhatIf and
NICE and (2) always for MOC.
For Research Question 1, we evaluated the generated counterfactuals by means of the desired
properties stated in Definition 1: validity (i, ovalid), proximity (ii, oprox), sparsity (iii, osparse)
and plausibility (iv, oplaus). We ranked all counterfactuals per dataset, model, and x⋆ by
their values in the desired properties, normalized the ranks between 0 and 1, and compared
the normalized ranks between the methods. The ranking ensures that counterfactuals are
comparable over all datasets and models. To take into account all three properties at once,
we also computed the HV indicator, which measures the HV in the objective space between the
non-dominated counterfactuals and a (worst-case) reference point (1 for oprox, no. features
for osparse and 1 for oplaus). For Research Question 2, we tracked the runtime behavior
for all methods in generating counterfactuals for (row-wise or column-wise subsets of) the
run_or_walk_info and hill_valley datasets.

6.2. Results
In the following, we present the results for the two stated research questions.

Research Question 1
Figure 10 compares the ranking of counterfactuals according to the desired properties for
MOC, NICE and WhatIf for each dataset separately. Figure 14 in the Appendix does the

Journal of Statistical Software 25

moc nice whatif
credit_g

diabetes
tic_tac_toe

bank8F
M

hill_valley
run_or_w

alk_info

oprox osparse oplaus oprox osparse oplaus oprox osparse oplaus

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

objective

ra
nk

Figure 10: Comparison of NICE, WhatIf, and MOC w.r.t. their rank in the properties
proximity (ii, oprox), sparsity (iii, osparse) and plausibility (iv, oplaus). Each gray line reflects a
counterfactual (for clarity purposes, only a maximum of 2000 counterfactuals are displayed).
The counterfactuals with the lowest and therefore best rank in an objective display the brown
lines. Lower values are better.

same for each model separately. Since our setup ensured that all compared counterfactuals
achieved the desired prediction, we omitted the results for the first property validity (i, ovalid).
Each gray line reflects a counterfactual. The counterfactuals with the lowest and therefore
best rank in one of the three remaining objectives display the brown lines. Appendix C.2
shows the results on the property instead of the raking scale for each model and dataset
separately. They agree with the results shown here.
WhatIf’s counterfactuals changed on average more features (osparse) and had the highest
distances to x⋆ (oprox), making WhatIf inferior to the other methods w.r.t. the desired coun-
terfactual properties sparsity (iii) and proximity (ii). However, its counterfactuals have low
training data distances (oplaus) by design, guaranteeing plausibility (iv).

26 counterfactuals: Counterfactual Explanation Methods in R

credit_g diabetes tic_tac_toe bank8FM hill_valley run_or_walk_info
log(hypervolum

e)
log(no. nondom

)
log(no. overall)

m
oc nic

e

wha
tif

m
oc nic

e

wha
tif

m
oc nic

e

wha
tif

m
oc nic

e

wha
tif

m
oc nic

e

wha
tif

m
oc nic

e

wha
tif

0

1

2

3

4

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

10.0

Figure 11: Comparison of NICE, WhatIf, and MOC w.r.t. their HV, the number of non-
dominated and valid counterfactuals (no. nondom) and the number of all returned counter-
factuals (no. overall). The values were logarithmized. Higher values are better.

n = 886

n = 8,859

n = 88,588

 0 5
0

10
0

15
0

20
0

25
0

moc

nice

whatif

moc

nice

whatif

moc

nice

whatif

runtime in seconds

(a) increasing n (run_or_walk_info)

p = 10

p = 30

p = 100

1 10 10
0

10
00

moc

nice

whatif

moc

nice

whatif

moc

nice

whatif

runtime in seconds

(b) increasing p (hill_valley)

Figure 12: Speed comparison of NICE, WhatIf, and MOC based on row-wise subsets of
the run_or_walk_info dataset and column-wise subsets of the hill_valley dataset. The
runtimes of NICE were aggregated for its three reward function configurations.

Journal of Statistical Software 27

Compared with MOC, the counterfactuals of NICE on average changed more features and
had often a higher distance to x⋆, indicating that NICE was overall inferior to MOC w.r.t.
sparsity and proximity. However, on average, the counterfactuals of NICE had lower training
data distances (measuring plausibility) than MOC’s counterfactuals.
Figure 11, displays the HV, the number of non-dominated, valid counterfactuals, and the
overall number of returned counterfactuals (including dominated and/or non-valid ones) on
the log scale for each dataset and method. Overall, MOC’s counterfactuals achieved the high-
est HV closely followed by NICE, indicating that MOC is slightly superior when considering
all objectives simultaneously. The HV of WhatIf’s counterfactuals is comparably low except
for the tic_tac_toe dataset with a low number of categorical features. While all counter-
factuals of MOC are (by design) non-dominated by other counterfactuals returned by the
method, many of the counterfactuals of NICE or WhatIf are dominated by others generated
by the same method. Apart from the tic_tac_toe dataset, WhatIf produced the least non-
dominated counterfactuals. MOC generated the most non-dominated counterfactuals except
for the credit_g and hill_valley datasets.

Research Question 2

Figure 12 compares the runtimes of our extended WhatIf and NICE versions with MOC.
WhatIf was the fastest and best scaling method. NICE ran on average 2 times longer than
MOC for high p. This is because for the hill_valley dataset with p = 100 features, the
method at worst needs to evaluate (p2 +p)/2 = 5050 observations for each of the three reward
functions. For low n, NICE was on average faster than MOC.

6.3. Discussion

In the following, we briefly discuss the suitability of each method for different scenarios based
on the results of our benchmark study. MOC returned on average the most non-dominated
counterfactuals of highest-quality when considering all desired properties simultaneously. Our
extended NICE version had comparatively high runtimes for a medium to high number of fea-
tures. WhatIf was the fastest method, but (by design) its counterfactuals suggested changes to
many features, impeding the interpretation. The method is suitable in time-critical scenarios
for datasets with a few categorical features.

7. Conclusion
In this work, we introduced the counterfactuals R package, which to the best of our knowledge
is the first R package that provides several counterfactual methods via a unified interface.
The package includes the method MOC as well as extended versions of WhatIf and NICE,
which are all capable of returning multiple counterfactuals for regression and (binary and
multiclass) classification models. In addition, we illustrated that the counterfactuals package
is quickly extensible with new methods. This is crucial, as the variety of counterfactual
methods proposed in research is growing rapidly, but the number of implemented methods in R
is very limited. Furthermore, the package offers a variety of functionalities for evaluating and
visualizing the counterfactuals. Thus, our package facilitates the application of counterfactual
methods in practice for auditing machine learning models.

28 counterfactuals: Counterfactual Explanation Methods in R

The results of our benchmark study and other research (e.g., Verma et al. 2022) suggest that
no existing counterfactual method is superior in all situations. This underlines the benefit of
the counterfactuals package, which makes a variety of methods readily available to the user.
Furthermore, the object-oriented concept of our package and the openly available benchmark
code allow new methods to easily compete with those currently available.

Computational details
The results in this work were obtained using R 4.3.2 (R Core Team 2025). R itself and most of
the packages used are available from CRAN – including the counterfactuals R package (Dandl
et al. 2026). We included all data examples of Sections 4 and 5 in dedicated vignettes. To facil-
itate full reproducibility of the benchmark study of Section 6, we created a dedicated Github
repository: https://github.com/slds-lmu/benchmark_2022_counterfactuals. The ex-
periments were run in parallel with the help of the batchtools package (Lang, Bischl, and
Surmann 2017) on a computer with a 2.60 GHz Intel Xeon processor, and 32 CPUs. Training
(incl. tuning) the models took 53 hours spread over 15 CPUs, and generating the counterfac-
tuals took 37 hours spread over 14 CPUs.

Acknowledgments
This work has been partially supported by the Federal Statistical Office of Germany. We
thank Gunnar König for insightful discussions on causality in counterfactual explanations.

References

Anderson E (1936). “The Species Problem in Iris.” Annals of the Missouri Botanical Garden,
23(3), 457–509. doi:10.2307/2394164.

Baron S (2023). “Explainable AI and Causal Understanding: Counterfactual Approaches
Considered.” Minds and Machines, 33(2), 347–377. doi:10.1007/s11023-023-09637-x.

Biecek P (2018). “DALEX: Explainers for Complex Predictive Models in R.” Journal of
Machine Learning Research, 19(84), 1–5.

Binder M, Dandl S, Moosbauer J (2020). mosmafs: Multi-Objective Simultaneous Model and
Feature Selection. doi:10.32614/CRAN.package.mosmafs. R package version 0.1.2.

Binder M, Pfisterer F, Lang M, Schneider L, Kotthoff L, Bischl B (2021). “mlr3pipelines -
Flexible Machine Learning Pipelines in R.” Journal of Machine Learning Research, 22(184),
1–7. doi:10.1201/9781003402848.

Binder M, Schneider L, Dandl S, Hofheinz A (2023). miesmuschel: Mixed Integer Evolution
Strategies. doi:10.32614/CRAN.package.miesmuschel. R package version 0.0.4-2.

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM
(2016). “mlr: Machine Learning in R.” Journal of Machine Learning Research, 17(170),
1–5.

https://github.com/slds-lmu/benchmark_2022_counterfactuals
https://doi.org/10.2307/2394164
https://doi.org/10.1007/s11023-023-09637-x
https://doi.org/10.32614/CRAN.package.mosmafs
https://doi.org/10.1201/9781003402848
https://doi.org/10.32614/CRAN.package.miesmuschel

Journal of Statistical Software 29

Bischl B, Lang M, Richter J, Bossek J, Horn D, Kerschke P (2020). ParamHelpers: Helpers
for Parameters in Black-Box Optimization, Tuning and Machine Learning. doi:10.32614/
CRAN.package.paramhelpers. R package version 1.14.1.

Breiman L (2001). “Statistical Modeling: The Two Cultures.” Statistical Science, 16(3),
199–231. doi:10.1214/ss/1009213726.

Brughmans D (2021). “NICE: Nearest Instance Counterfactual Explanations.”
Github repository. URL https://github.com/DBrughmans/NICE. Commit
6389a39692e9b98ecb1734f6603167029987f870.

Brughmans D, Leyman P, Martens D (2023). “NICE: An Algorithm for Nearest Instance
Counterfactual Explanations.” Data Mining and Knowledge Discovery, 38(5). doi:10.
1007/s10618-023-00930-y.

Carreira-Perpiñán MÁ, Hada SS (2021). “Counterfactual Explanations for Oblique Decision
Trees: Exact, Efficient Algorithms.” Proceedings of the AAAI Conference on Artificial
Intelligence, 35(8), 6903–6911. doi:10.1609/aaai.v35i8.16851.

Chang W (2021). R6: Encapsulated Classes with Reference Semantics. doi:10.32614/CRAN.
package.r6. R package version 2.5.1.

Dandl S, Hofheinz A, Binder M, Casalicchio G (2026). counterfactuals: An R Package for
Counterfactual Explanation Methods. doi:10.32614/CRAN.package.counterfactuals.
R package version 1.0.0.

Dandl S, Molnar C, Binder M (2020a). “counterfactuals: Counterfactual Explana-
tions.” Github repository. URL https://github.com/susanne-207/moc. Commit
d2fa9e0918d157c5d46a822b4ef110e641b45b76.

Dandl S, Molnar C, Binder M, Bischl B (2020b). “Multi-Objective Counterfactual Explana-
tions.” In T Bäck, M Preuss, A Deutz, H Wang, C Doerr, M Emmerich, H Trautmann
(eds.), Parallel Problem Solving from Nature – PPSN XVI, pp. 448–469. Springer-Verlag,
Cham. doi:10.1007/978-3-030-58112-1_31.

de Oliveira RMB, Martens D (2021). “A Framework and Benchmarking Study for Coun-
terfactual Generating Methods on Tabular Data.” Applied Sciences, 11(16). doi:
10.3390/app11167274.

Deb K, Pratap A, Agarwal S, Meyarivan T (2002). “A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
doi:10.1109/4235.996017.

Dowle M, Srinivasan A (2022). data.table: Extension of ‘data.frame‘. doi:10.32614/CRAN.
package.data.table. R package version 1.16.0.

Dua D, Graff C (2017). “UCI Machine Learning Repository.” URL http://archive.ics.
uci.edu/ml.

Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, Smola A (2020). “AutoGluon-
Tabular: Robust and Accurate AutoML for Structured Data.” arXiv 2003.06505, arXiv.org
E-Print Archive. doi:10.48550/arxiv.2003.06505.

https://doi.org/10.32614/CRAN.package.paramhelpers
https://doi.org/10.32614/CRAN.package.paramhelpers
https://doi.org/10.1214/ss/1009213726
https://github.com/DBrughmans/NICE
https://doi.org/10.1007/s10618-023-00930-y
https://doi.org/10.1007/s10618-023-00930-y
https://doi.org/10.1609/aaai.v35i8.16851
https://doi.org/10.32614/CRAN.package.r6
https://doi.org/10.32614/CRAN.package.r6
https://doi.org/10.32614/CRAN.package.counterfactuals
https://github.com/susanne-207/moc
https://doi.org/10.1007/978-3-030-58112-1_31
https://doi.org/10.3390/app11167274
https://doi.org/10.3390/app11167274
https://doi.org/10.1109/4235.996017
https://doi.org/10.32614/CRAN.package.data.table
https://doi.org/10.32614/CRAN.package.data.table
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.48550/arxiv.2003.06505

30 counterfactuals: Counterfactual Explanation Methods in R

Fisher RA (1936). “The Use of Multiple Measurements in Taxonomic Problems.” Annals of
Eugenics, 7(2), 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x.

Freiesleben T (2021). “The Intriguing Relation between Counterfactual Explanations
and Adversarial Examples.” Minds and Machines, 32(1), 77–109. doi:10.1007/
s11023-021-09580-9.

Goldstein A, Kapelner A, Bleich J, Pitkin E (2015). “Peeking Inside the Black Box: Visualiz-
ing Statistical Learning with Plots of Individual Conditional Expectation.” Journal of Com-
putational and Graphical Statistics, 24(1), 44–65. doi:10.1080/10618600.2014.907095.

Gower JC (1971). “A General Coefficient of Similarity and Some of Its Properties.” Biometrics,
27(4), 857–871. doi:10.2307/2528823.

Grömping U (2019). “South German Credit Data: Correcting a Widely Used Data Set.”
Report 04/2019, Department II, Beuth University of Applied Sciences Berlin. URL http:
//www1.beuth-hochschule.de/FB_II/reports/Report-2019-004.pdf.

Guidotti R (2018). “LORE: LOcal Rule-Based Explanations.” Github repository. URL https:
//github.com/riccotti/LORE. Commit 710ffb42bf764bae90e9295e14349f0250fc2628.

Guidotti R, Monreale A, Ruggieri S, Pedreschi D, Turini F, Giannotti F (2018). “Local Rule-
Based Explanations of Black Box Decision Systems.” arXiv 1805.10820, arXiv.org E-Print
Archive. doi:10.48550/arxiv.1805.10820.

Hothorn T, Zeileis A (2021). “Predictive Distribution Modelling Using Transformation
Forests.” Journal of Computational and Graphical Statistics, 30(4), 1181–1196. doi:
10.1080/10618600.2021.1872581.

Karimi AH, Barthe G, Balle B, Valera I (2020). “Model-Agnostic Counterfactual Explana-
tions for Consequential Decisions.” In Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS), volume 108 of Proceedings of Machine
Learning Research, pp. 895–905. PMLR. URL https://proceedings.mlr.press/v108/
karimi20a.html.

Karimi AH, Mohammadi K (2021). “mace: Model Agnostic Counterfactual Ex-
planations.” Github repository. URL https://github.com/amirhk/mace. Commit
01e6a405ff74e24dc3438a005cd60892154d189d.

Karimi AH, Schölkopf B, Valera I (2021). “Algorithmic Recourse: From Counterfactual
Explanations to Interventions.” In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 353–362. doi:10.1145/3442188.3445899.

Kato S (2018). “featureTweakR: R Package for Actionable Feature Tweaking.”
Github repository. URL https://github.com/katokohaku/featureTweakR. Commit
6f3e614531fe2c9e475703afdc4deb8aaf62f78f.

Kingma DP, Ba J (2017). “Adam: A Method for Stochastic Optimization.” arXiv 1412.6980
v9, arXiv.org E-Print Archive. doi:10.48550/arxiv.1412.6980.

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1007/s11023-021-09580-9
https://doi.org/10.1007/s11023-021-09580-9
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.2307/2528823
http://www1.beuth-hochschule.de/FB_II/reports/Report-2019-004.pdf
http://www1.beuth-hochschule.de/FB_II/reports/Report-2019-004.pdf
https://github.com/riccotti/LORE
https://github.com/riccotti/LORE
https://doi.org/10.48550/arxiv.1805.10820
https://doi.org/10.1080/10618600.2021.1872581
https://doi.org/10.1080/10618600.2021.1872581
https://proceedings.mlr.press/v108/karimi20a.html
https://proceedings.mlr.press/v108/karimi20a.html
https://github.com/amirhk/mace
https://doi.org/10.1145/3442188.3445899
https://github.com/katokohaku/featureTweakR
https://doi.org/10.48550/arxiv.1412.6980

Journal of Statistical Software 31

König G, Freiesleben T, Grosse-Wentrup M (2023). “Improvement-Focused Causal Recourse
(ICR).” Proceedings of the AAAI Conference on Artificial Intelligence, 37(10), 11847–
11855. doi:10.1609/aaai.v37i10.26398.

Kuhn M (2008). “Building Predictive Models in R Using the caret Package.” Journal of
Statistical Software, 28(5), 1–26. doi:10.18637/jss.v028.i05.

Kuhn M, Wickham H (2020). tidymodels: A Collection of Packages for Modeling and Machine
Learning Using tidyverse Principles. URL https://www.tidymodels.org/.

Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff
L, Bischl B (2019). “mlr3: A Modern Object-Oriented Machine Learning Framework in R.”
Journal of Open Source Software, 4(44). doi:10.21105/joss.01903.

Lang M, Bischl B, Richter J, Sun X, Binder M (2023). paradox: Define and Work with Param-
eter Spaces for Complex Algorithms. doi:10.32614/CRAN.package.paradox. R package
version 1.0.1.

Lang M, Bischl B, Surmann D (2017). “batchtools: Tools for R to Work on Batch Systems.”
Journal of Open Source Software, 2(10). doi:10.21105/joss.00135.

Lewis DK (1973). Counterfactuals. Blackwell, Malden.

Li R, Emmerich MTM, Eggermont J, Bäck T, Schütz M, Dijkstra J, Reiber JHC (2013).
“Mixed Integer Evolution Strategies for Parameter Optimization.” Evolutionary Computa-
tion, 21(1), 29–64. doi:10.1162/evco_a_00059.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22. URL https://journal.R-project.org/articles/RN-2002-022/.

López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016). “The irace
Package: Iterated Racing for Automatic Algorithm Configuration.” Operations Research
Perspectives, 3, 43–58. doi:10.1016/j.orp.2016.09.002.

Mahajan D, Tan C, Sharma A (2020). “Preserving Causal Constraints in Counterfactual
Explanations for Machine Learning Classifiers.” arXiv 1912.03277 v3, arXiv.org E-Print
Archive. doi:10.48550/arxiv.1912.03277.

Makiyama K (2015). “pforeach: An Easy Way to Parallel Processing in
R.” Github repository. URL https://github.com/hoxo-m/pforeach. Commit
c44f3bf651a4b2d5d5657bf8be3a94f93769871.

Molnar C (2022). Interpretable Machine Learning. 2nd edition. Lulu. URL https:
//christophm.github.io/interpretable-ml-book.

Molnar C, Bischl B, Casalicchio G (2018). “iml: An R Package for Interpretable Machine
Learning.” Journal of Open Source Software, 3(26), 786. doi:10.21105/joss.00786.

Moreira C, Chou YL, Hsieh C, Ouyang C, Jorge J, Pereira JM (2022). “Benchmarking
Counterfactual Algorithms for XAI: From White Box to Black Box.” arXiv 2203.02399v2,
arXiv.org E-Print Archive. doi:10.48550/arxiv.2203.02399.

https://doi.org/10.1609/aaai.v37i10.26398
https://doi.org/10.18637/jss.v028.i05
https://www.tidymodels.org/
https://doi.org/10.21105/joss.01903
https://doi.org/10.32614/CRAN.package.paradox
https://doi.org/10.21105/joss.00135
https://doi.org/10.1162/evco_a_00059
https://journal.R-project.org/articles/RN-2002-022/
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.48550/arxiv.1912.03277
https://github.com/hoxo-m/pforeach
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.21105/joss.00786
https://doi.org/10.48550/arxiv.2203.02399

32 counterfactuals: Counterfactual Explanation Methods in R

Nierenberg DW, Stukel TA, Baron JA, Dain BJ, Greenberg ER, The Skin Cancer Prevention
Study Group (1989). “Determinants of Plasma Levels of Beta-Carotene and Retinol.”
American Journal of Epidemiology, 130(3), 511–521. doi:10.1093/oxfordjournals.aje.
a115365.

Pawelczyk M, Bielawski S, Van den Heuvel J, Richter T, Kasneci G (2021). “CARLA:
A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation
Algorithms.” In J Vanschoren, S Yeung (eds.), Proceedings of the 35th Conference on
Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Bench-
marks. URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/
paper/2021/file/b53b3a3d6ab90ce0268229151c9bde11-Paper-round1.pdf.

Pearl J (2009). Causality: Models, Reasoning and Inference. 2nd edition. Cambridge Univer-
sity Press. doi:10.1017/cbo9780511803161.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830.

Pfisterer F, Poon J, Lang M (2022). “mlr3keras: mlr3 Keras Extension.”
Github repository. URL https://github.com/mlr-org/mlr3keras. Commit
bad8434b7898b51b2143fc680594057c00dc7080.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://www.R-project.org/.

Schleich M, Geng Z, Zhang Y, Suciu D (2021). “GeCo: Quality Counterfactual Explanations
in Real Time.” Proceedings of the VLDB Endowment, 14(9), 1681–1693. doi:10.14778/
3461535.3461555.

Stasinopoulos M, Rigby B, De Bastiani F (2021). gamlss.data: Data for Generalised Ad-
ditive Models for Location Scale and Shape. doi:10.32614/CRAN.package.gamlss.data.
R package version 6.0.2.

Stepin I, Alonso JM, Catala A, Pereira-Fariña M (2021). “A Survey of Contrastive and
Counterfactual Explanation Generation Methods for Explainable Artificial Intelligence.”
IEEE Access, 9, 11974–12001. doi:10.1109/access.2021.3051315.

Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014).
“Intriguing Properties of Neural Networks.” arXiv 1312.6199 v4, arXiv.org E-Print Archive.
doi:10.48550/arxiv.1312.6199.

Therneau T, Atkinson B (2019). rpart: Recursive Partitioning and Regression Trees. doi:
10.32614/CRAN.package.rpart. R package version 4.1.23.

Todeschini A (2021). rchallenge: A Simple Data Science Challenge System. doi:10.32614/
CRAN.package.rchallenge. R package version 1.3.4.

https://doi.org/10.1093/oxfordjournals.aje.a115365
https://doi.org/10.1093/oxfordjournals.aje.a115365
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/b53b3a3d6ab90ce0268229151c9bde11-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/b53b3a3d6ab90ce0268229151c9bde11-Paper-round1.pdf
https://doi.org/10.1017/cbo9780511803161
https://github.com/mlr-org/mlr3keras
https://doi.org/10.32614/R.manuals
https://www.R-project.org/
https://doi.org/10.14778/3461535.3461555
https://doi.org/10.14778/3461535.3461555
https://doi.org/10.32614/CRAN.package.gamlss.data
https://doi.org/10.1109/access.2021.3051315
https://doi.org/10.48550/arxiv.1312.6199
https://doi.org/10.32614/CRAN.package.rpart
https://doi.org/10.32614/CRAN.package.rpart
https://doi.org/10.32614/CRAN.package.rchallenge
https://doi.org/10.32614/CRAN.package.rchallenge

Journal of Statistical Software 33

Tolomei G, Silvestri F, Haines A, Lalmas M (2017). “Interpretable Predictions of Tree-Based
Ensembles via Actionable Feature Tweaking.” In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 465–474. doi:
10.1145/3097983.3098039.

Ustun B, Spangher A, Liu Y (2019). “Actionable Recourse in Linear Classification.” In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 10–19.
doi:10.1145/3287560.3287566.

Van der Loo M (2022). gower: Gower’s Distance. doi:10.32614/CRAN.package.gower.
R package version 1.0.1.

Van Rossum G, Drake Jr FL (1995). “Python Tutorial.” Technical Report CS-R9526, Centrum
voor Wiskunde en Informatica.

Vanschoren J, Van Rijn JN, Bischl B, Torgo L (2014). “OpenML: Networked Science in Ma-
chine Learning.” SIGKDD Explorations Newsletter, 15(2), 49–60. doi:10.1145/2641190.
2641198.

Verma S, Boonsanong V, Hoang M, Hines KE, Dickerson JP, Shah C (2022). “Counterfac-
tual Explanations and Algorithmic Recourses for Machine Learning: A Review.” arXiv
2010.10596 v3, arXiv.org E-Print Archive. doi:10.48550/arxiv.2010.10596.

Wachter S, Mittelstadt B, Russell C (2018). “Counterfactual Explanations without Open-
ing the Black Box: Automated Decisions and the GDPR.” Harvard Journal of Law &
Technology, 31(2), 841–887. doi:10.2139/ssrn.3063289.

Wexler J, Pushkarna M, Bolukbasi T, Wattenberg M, Viégas F, Wilson J (2019). “The
What-If Tool: Interactive Probing of Machine Learning Models.” IEEE Transactions on
Visualization and Computer Graphics, 26(1), 56–65. doi:10.1109/tvcg.2019.2934619.

Wilson DR, Martinez TR (1997). “Improved Heterogeneous Distance Functions.” Journal of
Artificial Intelligence Research, 6, 1–34. doi:10.1613/jair.346.

Xie L, Song Y, Lin T, Guo H, Wang B, Tang G, Liu C, Huang W, Yang Y, Ling W, Zhang
Y, Li J, Huo Y, Wang X, Zhang H, Qin X, Xu X (2019). “Association of Plasma Retinol
Levels with Incident Cancer Risk in Chinese Hypertensive Adults: A Nested Case-Control
Study.” British Journal of Nutrition, 122(3), 293–300. doi:10.1017/s000711451900120x.

Zitzler E, Thiele L (1998). “Multiobjective Optimization Using Evolutionary Algorithms –
A Comparative Case Study.” In AE Eiben, T Bäck, M Schoenauer, HP Schwefel (eds.),
Parallel Problem Solving from Nature – PPSN V, pp. 292–301. Springer-Verlag, Heidelberg.
doi:10.1007/bfb0056872.

https://doi.org/10.1145/3097983.3098039
https://doi.org/10.1145/3097983.3098039
https://doi.org/10.1145/3287560.3287566
https://doi.org/10.32614/CRAN.package.gower
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.48550/arxiv.2010.10596
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1109/tvcg.2019.2934619
https://doi.org/10.1613/jair.346
https://doi.org/10.1017/s000711451900120x
https://doi.org/10.1007/bfb0056872

34 counterfactuals: Counterfactual Explanation Methods in R

A. Algorithmic reference

Algorithm 1 MOC based on Dandl et al. (2020b) as implemented in the counterfactuals
R package
Inputs:
Data point to explain prediction for x⋆ ∈ X
Desired outcome (range) Y ′ ⊂ R
Prediction function f̂ : X → R
Observed data X
Number of generations ngenerations
Size of population µ
Recombination and mutation methods including probabilities
Selection method and initialization method
Stopping criterion
(Additional user inputs, e.g., range of numerical features, immutable features, distance
function)

1: Initialize population P0 with |P0| = µ
2: Evaluate candidates according to the four objectives of Equation 5
3: Set t = 0
4: while stopping criterion not met
5: Ct = create_offspring(Pt), |Ct| = µ by selecting, recombining and mutating

parents with given probabilities
6: Combine parents and offspring Rt = Ct ∪ Pt

7: Assign candidates to a front according to their objective values:
(F1, F2, . . . , Fm) = nondominated_sorting(Rt)

8: for i = 1, . . . , m
9: Sort candidates within a front with (tailored) crowding distance sorting:

F̃i = crowding_distance_sort(Fi)
10: end for
11: Set Pt+1 = ∅ and i = 1
12: while |Pt+1| + |F̃i| ≤ µ
13: Pt+1 = Pt+1 ∪ F̃i

14: i = i + 1
15: end while
16: Choose first µ − |Pt+1| elements of F̃i: Pt+1 = Pt+1 ∪ F̃i[1 : (µ − |Pt+1|)]
17: t = t + 1
18: end while
19: Return unique, non-dominated candidates of ⋃t

k=0 Pk \ x⋆

Journal of Statistical Software 35

Algorithm 2 NICE based on Brughmans et al. (2023) as implemented in the counterfactuals
R package
Inputs:
Data point to explain prediction for x⋆ ∈ X
Desired outcome (range) Y ′ ⊂ R
Prediction function f̂ : X → R
Observed data X
Reward function RO, O ∈{sparsity, proximity, plausibility}
Indicator whether multiple counterfactuals should be returned return_multiple
Indicator whether to terminate as soon as desired prediction is reached finish_early
(Additional user inputs, e.g., distance function)

1: Find closest observed data point xnn ∈ X to x⋆ with desired prediction (Equation 8)
2: Set xbest = x⋆

3: Initialize archive set A = ∅
4: Set J = {j ∈ {1, . . . , p} : xnn,j ̸= xbest

j }
5: while (f̂(xbest) ̸∈ Y ′ & finish_early == TRUE) | (J ̸= ∅)
6: jbest = ∅
7: for j ∈ J :
8: x = xbest

9: Create new candidate by replacing one feature: xj = xnn,j

10: if RO(x) > RO(xbest): xbest = x and jbest = j
11: Save created candidate in an archive: A = A ∪ x
12: end for
13: Update J = J\ jbest

14: end while
15: if return_multiple: return {a ∈ A : f̂(a) ∈ Y ′}
16: else return xbest

36 counterfactuals: Counterfactual Explanation Methods in R

B. The counterfactuals R package

B.1. Class diagram

Figure 13: Detailed class diagram of the counterfactuals package.

B.2. Default values

The default parameter settings of the implementations of WhatIf and NICE should mimic the
originally proposed methods in the corresponding papers (Wexler et al. 2019; Brughmans et al.
2023). Our MOC implementation has the same parameters as the original MOC implementa-
tion proposed in (Dandl et al. 2020a) except for p_rec_use_orig. Instead of resetting after

Journal of Statistical Software 37

recombination and after mutation, we simplify things and reset only once after mutation with
a probability of p_mut_use_orig. Due to the change in the dependency packages (paradox
and miesmuschel, see Section 2.1), we re-tuned the MOC hyperparameters using the iterated
F-race described in Dandl et al. (2020b) (see Appendix B). The code for tuning can be found
here: https://github.com/dandls/moc/tree/irace_newversion. Although tuning identi-
fied the usage of the conditional mutator as a successor, we set use_conditional_mutator
to FALSE, since it increases the runtime considerably.

Name Description Default
n_counterfactuals The number of counterfactuals to be found. 1
lower Vector of minimum values for numeric features

named with the corresponding feature names.
If NULL, the element for a numeric feature in
lower is taken as its minimum value in ob-
served data.

NULL

upper Vector of maximum values for numeric features
named with the corresponding feature names.
If NULL, the element for a numeric feature in
upper is taken as its maximum value in ob-
served data.

NULL

distance_function Distance function to compute the distances be-
tween the original and the training data points.
Either the name of an already implemented
distance function ("gower" or "gower_c") or
a function. If set to "gower" (default),
then Gower’s distance (Gower 1971) is used;
"gower_c" is a C-based more efficient version
of Gower’s distance. A function must have
three arguments x, y, and data, and must re-
turn a numeric matrix.

"gower"

Table 2: Parameters of WhatIf and their default values in the counterfactuals package.

Name Description Default
epsilon If not NULL, candidates whose prediction is far-

ther away from the desired interval than ep-
silon are penalized.

NULL

fixed_features Names of features that are not allowed to be
changed. NULL (default) allows all features to
be changed.

NULL

max_changed Maximum number of feature changes. NULL
(default) allows any number of changes.

NULL

mu The population size. 20
n_generations The number of generations. 175
p_rec Probability with which an individual is selected

for recombination.
0.71

https://github.com/dandls/moc/tree/irace_newversion

38 counterfactuals: Counterfactual Explanation Methods in R

p_rec_gen Probability with which a feature/gene is se-
lected for recombination.

0.62

p_mut Probability with which an individual is selected
for mutation.

0.73

p_mut_gen Probability with which a feature/gene is se-
lected for mutation.

0.5

p_mut_use_orig Probability with which a feature/gene is reset
to its original value in x_interest after muta-
tion.

0.4

k The number of data points to use for the fourth
objective (Equation 4).

1

weights The weights used to compute the weighted sum
of dissimilarities for the fourth objective. It is
either a single value or a vector of length k
summing up to 1 (one weight for each of the k
closest points). NULL (default) means all data
points are weighted equally.

NULL

lower Vector of minimum values for numeric features
named with the corresponding feature names.
If NULL, the element for a numeric feature in
lower is taken as its minimum value in observed
data.

NULL

upper Vector of maximum values for numeric features
named with the corresponding feature names.
If NULL, the element for a numeric feature in
upper is taken as its maximum value in ob-
served data.

NULL

init_strategy The population initialization strategy. Can be
"random", "sd", "traindata" or "icecurve".

"icecurve"

use_conditional_mutator Should a conditional mutator be used? The
conditional mutator generates plausible feature
values based on the values of the other features.

FALSE

distance_function Distance function for the second and fourth
objectives. Either the name of an already
implemented distance function ("gower" or
"gower_c") or a function. If set to "gower"
(default), then Gower’s distance (Gower 1971)
is used; "gower_c" is a C-based more efficient
version of Gower’s distance. A function must
have three arguments x, y, and data, and must
return a numeric matrix.

"gower"

Table 3: Parameters of MOC and their default values in the counterfactuals package.

Journal of Statistical Software 39

Name Description Default
optimization The reward function to optimize. Can

be "sparsity" (default), "proximity", or
"plausibility".

"sparsity"

x_nn_correct Should only correctly predicted observations
be considered for the most similar instance
search?

TRUE

margin_correct Only for regression models. The accepted mar-
gin for considering a prediction as “correct”. Ig-
nored if x_nn_correct = FALSE. If NULL, the
accepted margin is set to half the median ab-
solute distance between the true and predicted
outcomes in the observed data.

NULL

return_multiple Should multiple counterfactuals be returned?
If TRUE, the algorithm returns all created in-
stances whose prediction is in the desired in-
terval.

FALSE

finish_early Should the algorithm terminate after an iter-
ation in which the prediction for the highest
reward instance is in the desired interval. If
FALSE, the algorithm continues until x_nn is
recreated.

TRUE

distance_function Distance function for computing the distances
between the original and the training data
points for finding x_nn. Either the name
of an already implemented distance function
("gower" or "gower_c") or a function. If set
to "gower" (default), then Gower’s distance
(Gower 1971) is used; "gower_c" is a C-based
more efficient version of Gower’s distance. A
function must have three arguments x, y, and
data, and must return a numeric matrix.

"gower"

Table 4: Parameters of NICE and their default values in the counterfactuals package.

B.3. Different machine learning interfaces

The counterfactuals R package only allows machine learning models as an input that are
instances of an iml::Predictor object. The Predictor class encapsulates a fitted model
together with its underlying (training) data. In Section 4, we saw that it works off-the-shelf
with models fitted with the randomForest and mlr3 R packages (Liaw and Wiener 2002; Lang
et al. 2019). In this section, we generate counterfactuals for the plasma retinol example of
Section 4.2 for models trained with the caret, tidymodels and mlr packages (Kuhn 2008;
Kuhn and Wickham 2020; Bischl et al. 2016). While all these machine learning interfaces
allow training of a variety of models (linear models, model ensembles, etc.), for illustration,
we focus on regression trees. Trees are fitted internally with rpart (Therneau and Atkinson
2019), such that – for the sake of completeness – we also show how to generate counterfactuals

40 counterfactuals: Counterfactual Explanation Methods in R

for a rpart tree. For each tree, we generate a counterfactual for the 100th row of the plasma
dataset using the NICE method. The counterfactual should propose changes such that for
the observation a plasma concentration larger than 500 ng/ml is predicted.

R> data("plasma", package = "gamlss.data")
R> x_interest <- plasma[100L,]

caret package

First, we fit a regression tree model with the help of caret. To avoid tuning of the tree, we
manually set the only tuning parameter cp to 0.01 – the default of the rpart package. Then,
we initialize an iml::Predictor object with the fitted model as an input.

R> library("caret")
R> treecaret <- caret::train(retplasma ~ ., data = plasma[-100L,],
+ method = "rpart", tuneGrid = data.frame(cp = 0.01))
R> predcaret <- Predictor$new(model = treecaret, data = plasma[-100L,],
+ y = "retplasma")
R> predcaret$predict(x_interest)

.prediction
1 342.9231

For the 100th row of the plasma dataset (our x_interest or x⋆), we predict a median value
of 342.92 – the same as in Section 4.2. Next, we generate counterfactuals by initializing a
NICERegr object with the instantiated Predictor.

R> nicecaret <- NICERegr$new(predcaret, optimization = "proximity",
+ margin_correct = 0.5, return_multiple = FALSE)
R> nicecaret$find_counterfactuals(x_interest,
+ desired_outcome = c(500, Inf))

1 Counterfactual(s)

Desired outcome range: [500, Inf]

Head:
age sex smokstat bmi vituse calories fat fiber alcohol cholesterol

1: 46 1 3 35.26 3 2667.5 131.6 10.1 0 550.5
betadiet retdiet betaplasma

1: 1210 1291 218

Since for all the examples shown in this section, we internally fit a rpart model to the same
data, the prediction and the counterfactual for x_interest will be the same. We, therefore,
omit the outputs for the prediction and counterfactual for the following machine learning
interfaces.

Journal of Statistical Software 41

tidymodels package
Regression trees of the tidymodels package also work off-the-shelf. However, for classification
models, the iml::Predictor requires a prediction wrapper function (predict.function)
such that class probabilities are returned instead of class labels. For details, the corresponding
help page should be consulted.

R> library("tidymodels")
R> treetm <- decision_tree(mode = "regression", engine = "rpart") %>%

fit(retplasma ~ ., data = plasma[-100L,])
R> predtm <- Predictor$new(model = treetm, data = plasma[-100L,],
+ y = "retplasma")
R> predtm$predict(x_interest)
R> nicetm <- NICERegr$new(predtm, optimization = "proximity",
+ margin_correct = 0.5, return_multiple = FALSE)
R> nicetm$find_counterfactuals(x_interest = x_interest,
+ desired_outcome = c(500, Inf))

mlr package
For the mlr package, the workflow to generate counterfactuals is similar to the one for the
caret package. We only need mlr::RegrTask and mlr::regr.rpart objects.

R> library("mlr")
R> task <- mlr::makeRegrTask(data = plasma[-100L,], target = "retplasma")
R> mod <- mlr::makeLearner("regr.rpart")
R> treemlr <- mlr::train(mod, task)
R> predmlr <- Predictor$new(model = treemlr, data = plasma[-100L,],
+ y = "retplasma")
R> predmlr$predict(x_interest)
R> nicemlr <- NICERegr$new(predmlr, optimization = "proximity",
+ margin_correct = 0.5, return_multiple = FALSE)
R> nicemlr$find_counterfactuals(x_interest = x_interest,
+ desired_outcome = c(500, Inf))

rpart package
For sake of completeness, we also show how to generate counterfactuals for a regression model
directly fitted with the rpart package.

R> library("rpart")
R> treerpart <- rpart(retplasma ~ ., data = plasma[-100L,])
R> predrpart <- Predictor$new(model = treerpart, data = plasma[-100L,],
+ y = "retplasma")
R> predrpart$predict(x_interest)
R> nicerpart <- NICERegr$new(predrpart, optimization = "proximity",
+ margin_correct = 0.5, return_multiple = FALSE)
R> nicerpart$find_counterfactuals(x_interest = x_interest,
+ desired_outcome = c(500, Inf))

42 counterfactuals: Counterfactual Explanation Methods in R

B.4. Class FeatureTweakerClassif

R> FeatureTweakerClassif <- R6Class("FeatureTweakerClassif",
+ inherit = CounterfactualMethodClassif,
+
+ public = list(
+ initialize = function(predictor, ktree = NULL, epsiron = 0.1,
+ resample = FALSE) {
+ super$initialize(predictor)
+ private$ktree = ktree
+ private$epsiron = epsiron
+ private$resample = resample
+ }
+),
+
+ private = list(
+ ktree = NULL,
+ epsiron = NULL,
+ resample = NULL,
+
+ run = function() {
+ predictor = private$predictor
+ y_hat_interest = predictor$predict(private$x_interest)
+ class_x_interest = names(y_hat_interest)[which.max(y_hat_interest)]
+ rf = predictor$model
+
+ rules = getRules(rf, ktree = private$ktree,
+ resample = private$resample)
+ es = set.eSatisfactory(rules, epsiron = private$epsiron)
+ tweaks = featureTweakR::tweak(
+ es, rf, private$x_interest, label.from = class_x_interest,
+ label.to = private$desired_class, .dopar = FALSE
+)
+ return(tweaks$suggest)
+ },
+
+ print_parameters = function() {
+ cat(" - epsiron: ", private$epsiron, "\n")
+ cat(" - ktree: ", private$ktree, "\n")
+ cat(" - resample: ", private$resample)
+ }
+)
+)

Journal of Statistical Software 43

C. Benchmarking

C.1. Hyperparameter tuning

For hyperparameter tuning, we used random search (with 30 evaluations) and 5-fold CV
with the misclassification error as a performance measure. Table 5 shows the tuning search
space of each model. Numerical features were standardized and categorical ones were one-hot
encoded using the mlr3pipelines package (Binder, Pfisterer, Lang, Schneider, Kotthoff, and
Bischl 2021). The optimizer for the neural network was ADAM (Kingma and Ba 2017), and
early stopping was imposed after 5 patience steps. All other hyperparameters were set to their
default values in the packages of the mlr3 ecosystem (Lang et al. 2019). For the hill_valley
dataset we used the default deep and wide architecture (two layers) inspired by Erickson et al.
(2020) as implemented in the mlr3keras package without tuning (Pfisterer, Poon, and Lang
2022). Table 6 shows the accuracies of each model using nested resampling (with 5-fold CV
in the inner and outer loop).

Model Hyperparameter Range
randomForest ntrees [0, 1000]
xgboost nrounds [0, 1000]
svm cost [0.01, 1]
logreg - -
neuralnet lr [0.00001, 0.1]

layer_size [1, 20]

Table 5: Tuning search space of each model. Hyperparameters ntrees and nrounds were
log-transformed.

dataset logistic_regression neural_network ranger svm xgboost
credit_g 0.72 0.71 0.71 0.73 0.70
diabetes 0.75 0.72 0.75 0.73 0.72
tic_tac_toe 0.97 0.98 0.95 0.79 0.98
bank8FM 0.94 0.94 0.94 0.95 0.94
hill_valley 0.60 0.53 0.56 0.48 0.57
run_or_walk_info 0.72 0.91 0.99 0.96 0.99

Table 6: Classification accuracies of each model on each dataset. The accuracies were
computed using nested resampling with 5-fold CV in the inner and outer loop.

44 counterfactuals: Counterfactual Explanation Methods in R

C.2. Additional results

moc nice whatif

logreg
neuralnet

ranger
svm

xgboost

oprox osparse oplaus oprox osparse oplaus oprox osparse oplaus

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

objective

ra
nk

Figure 14: Comparison of NICE, WhatIf, and MOC w.r.t. their rank in the properties
proximity (ii, oprox), sparsity (iii, osparse) and plausibility (iv, oplaus). Each gray line reflects a
counterfactual (for clarity purposes, only a maximum of 2000 counterfactuals are displayed).
The counterfactuals with the lowest and therefore best rank in an objective display the brown
lines. Lower values are better.

Journal of Statistical Software 45

oprox osparse oplaus no. nondom

logreg
neuralnet

ranger
svm

xgboost

0.
0

0.
1

0.
2

0.
3

0.
4 5 10 0.

0
0.

1
0.

2 0 10 20 30 40

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

(a) credit_g

oprox osparse oplaus no. nondom

logreg
neuralnet

ranger
svm

xgboost

0.
00

0.
05

0.
10

0.
15

0.
20 2 4 6 8

0.
00

0.
03

0.
06

0.
09 0

20
0

40
0

60
0

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

(b) diabetes

Figure 15: Comparison of NICE, WhatIf, and MOC w.r.t. the measures dist_x_interest,
no_changed, dist_train (explained in Section 4), and no. nondom (number of non-
dominated counterfactuals) for several models for the datasets credit_g and diabetes. ovalid
was 0 for all counterfactuals. Lower values are better, except for no. nondom. The figure is
based on Dandl et al. (2020b).

46 counterfactuals: Counterfactual Explanation Methods in R

oprox osparse oplaus no. nondom

logreg
neuralnet

ranger
svm

xgboost

0.
1

0.
2

0.
3

0.
4 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20 5 10 15

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

(a) tic_tac_toe

oprox osparse oplaus no. nondom

logreg
neuralnet

ranger
svm

xgboost

0.
00

0.
05

0.
10

0.
15

0.
20 2 4 6

0.
00

0.
02

0.
04

0.
06 0

20
0

40
0

60
0

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

(b) bank8FM

Figure 16: Comparison of NICE, WhatIf, and MOC w.r.t. the measures dist_x_interest,
no_changed, dist_train (explained in Section 4), and no. nondom (number of non-
dominated counterfactuals) for several models for the datasets tic_tac_toe and bank8FM.
ovalid was 0 for all counterfactuals. Lower values are better, except for no. nondom. The
figure is based on Dandl et al. (2020b).

Journal of Statistical Software 47

oprox osparse oplaus no. nondom
logreg

neuralnet
ranger

svm
xgboost

0.
0

0.
1

0.
2

0.
3 0 25 50 75 10

0
0.

00
0.

02
0.

04
0.

06 0
50

00

10
00

0

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

(a) hill_valley

oprox osparse oplaus no. nondom

logreg
neuralnet

ranger
svm

xgboost

0.
00

0.
03

0.
06

0.
09 2 4 6

0.
00

0.
01

0.
02

0.
03

0.
04 0 50 10

0
15

0
20

0

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

whatif

nice

moc

(b) run_or_walk_info

Figure 17: Comparison of NICE, WhatIf, and MOC w.r.t. the measures dist_x_interest,
no_changed, dist_train (explained in Section 4), and no. nondom (number of
non-dominated counterfactuals) for several models for the datasets hill_valley and
run_or_walk_info. ovalid was 0 for all counterfactuals. Lower values are better, except
for no. nondom. The figure is based on Dandl et al. (2020b).

48 counterfactuals: Counterfactual Explanation Methods in R

Affiliation:
Giuseppe Casalicchio
Department of Statistics
Ludwig-Maximilians-Universität München, Germany
Ludwigstr. 33, 80539 Munich, Germany
Munich Center for Machine Learning (MCML), Germany
E-mail: Giuseppe.Casalicchio@stat.uni-muenchen.de

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

December 2025, Volume 115, Issue 9 Submitted: 2023-06-29
doi:10.18637/jss.v115.i09 Accepted: 2024-10-17

mailto:Giuseppe.Casalicchio@stat.uni-muenchen.de
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v115.i09

	Introduction and related work
	Methodological background and extensions
	Multi-objective counterfactual explanations
	Original method
	Modifications

	WhatIf
	Original method
	Modifications

	Nearest instance counterfactual explanations
	Original method
	Modifications

	The counterfactuals R package
	Use cases
	MOC applied to a classification task
	Generation of counterfactuals
	The Counterfactuals object
	MOC diagnostics

	NICE applied to a regression task
	User-defined distance function

	Extending the package
	Class structure
	Implementation of the initialize() method
	Implementation of the run method

	Feature tweaking applied to a classification task

	Benchmarking
	Setup
	Results
	Research Question 1
	Research Question 2

	Discussion

	Conclusion
	Algorithmic reference
	The counterfactuals R package
	Class diagram
	Default values
	Different machine learning interfaces
	caret package
	tidymodels package
	mlr package
	rpart package

	Class FeatureTweakerClassif

	Benchmarking
	Hyperparameter tuning
	Additional results

