Journal of Statistical Software

December 2025, Volume 115, Issue 10. doi: 10.18687/jss.v115.i10

TrendLSW: Trend and Spectral Estimation of
Nonstationary Time Series in R

Euan T. McGonigle Rebecca Killick Matthew A. Nunes
University of Southampton Lancaster University University of Bath
Abstract

The TrendLSW R package has been developed to provide users with a suite of wavelet-
based techniques to analyze the statistical properties of nonstationary time series. The key
components of the package are (a) two approaches for the estimation of the evolutionary
wavelet spectrum in the presence of trend; and (b) wavelet-based trend estimation in
the presence of locally stationary wavelet errors via both linear and nonlinear wavelet
thresholding; and (c) the calculation of associated pointwise confidence intervals. Lastly,
the package directly implements boundary handling methods that enable the methods to
be performed on data of arbitrary length, not just dyadic length as is common for wavelet-
based methods, ensuring no preprocessing of data is necessary. The key functionality of
the package is demonstrated through two data examples, arising from biology and activity
monitoring.

Keywords: TrendLSW, evolutionary wavelet spectrum, trend estimation, locally stationary
time series, R.

1. Introduction

Modern time series data can often possess complex characteristics. Given technological ad-
vancements in data recording tools, leading to time series being observed over increasingly
larger time-scales, it is common for the statistical properties of a time series to vary over
time. Examples of so-called ‘nonstationary’ time series can be found in a wide variety of
applications areas, including climatology (Beaulieu and Killick 2018), economics (Roueff and
von Sachs 2019), and epidemiology (Jiang, Zhao, and Shao 2023).

Two key quantities of interest, the mean function and dependence structure, are amongst the
most commonly studied properties in time series analysis. Modeling how these properties
evolve is crucial for making informed inference on the data: incorrectly assuming stationary

https://doi.org/10.18637/jss.v115.i10
https://orcid.org/0000-0003-0902-0035
https://orcid.org/0000-0003-0583-3960
https://orcid.org/0000-0002-4719-2690

2 TrendLSW: Trend Locally Stationary Wavelet Processes in R

behavior may lead to drawing misleading conclusions. It is known to be a challenging prob-
lem to estimate one of these time-varying properties when the other is stationary, and yet
more challenging when both display time-dependent characteristics. Therefore, it is common
practice for analysis to be restricted to either the mean or dependence.

For mean function estimation in time series, there is a vast literature dedicated to topics
including tackling nonparametric regression (von Sachs and MacGibbon 2000; Vogt 2012),
and trend estimation and detection (Wu and Zhao 2007; Zhang and Wu 2011).

For modeling nonstationary dependence structures, a number of approaches have been pro-
posed; for an overview, see Dahlhaus (2012). For example, Priestley (1965) introduces evo-
lutionary processes, Dahlhaus (1997) defines the locally stationary Fourier (LSF) processes,
whilst Nason, von Sachs, and Kroisandt (2000) introduce the locally stationary wavelet (LSW)
model. Ombao, Raz, von Sachs, and Guo (2002) consider the smoothed localized exponential
(SLEX) model, whilst Van Bellegem and Dahlhaus (2006) discuss nonstationary autoregres-
sive models, where the parameters are allowed to vary with time. Zhou and Wu (2009) define
locally stationary time series as an “input-output” physical system. Other approaches which
can capture both time-varying means and time-varying dynamics are time-varying structural
autoregression models (e.g. Kilian and Liitkepohl 2017) and dynamic linear models, see for
example, Keele and Kelly (2006).

Existing software in the area of nonstationary time series predominantly focuses on estimation
of either the mean or dependence structure. A comprehensive review of all such packages is
outside the scope of this article — in particular any R (R Core Team 2025) package implement-
ing a regression approach can be adapted to trend estimation in time series data by using the
time index as the covariate. For example, functionality for trend estimation via penalized re-
gression approaches or regression splines (such as in the genlasso, Arnold and Tibshirani 2022,
and earth, Milborrow, Hastie, and Tibshirani 2024, packages respectively) could be adapted
to serially dependent noise. For estimation of nonstationary dependence structure, the R
package LSTS (Olea, Palma, and Rubio 2021) implements the LSF approach. Nason (2024)
implements wavelet-based methods for time series in the wavethresh package, including the
LSW model, as well as wavelet-based trend estimation but for a second-order stationary time
series. The locits package (Nason 2025) allows for time-varying autocovariance estimation
under an LSW model, whilst the LSWPIib library (Cardinali and Nason 2022) provides lo-
cally stationary wavelet packet representations and associated spectral estimation methods.
Taylor, Park, and Eckley (2019) extend the LSW approach to multivariate time series in the
package mvLSW. Other application-focused packages for nonstationary time series analysis
include the RSEIS package (Lees and Harris 2024), which has functionality for spectrogram
computation and visualization for seismic data. For trend detection, packages include trend
(Pohlert 2023) and funtimes (Lyubchich, Gel, and Vishwakarma 2025). We mention that, for
nonparametric regression without a focus on the time series setting, packages include mgev
(Wood 2025) and gam (Hastie 2025). However, to the best of our knowledge, there are few R
packages available specifically designed for estimation of trend in the presence of nonstation-
ary dependence. Examples include software for dynamic linear models in the dynlm package
(Zeileis 2019), also available in the nonlinear time series setting in tsDyn (Di Narzo, Aznarte,
and Stigler 2024; Stigler 2019). However, these are not designed for the locally stationary
setting.

In this article we present an R implementation of the trend locally stationary wavelet (TLSW)
model, proposed in McGonigle, Killick, and Nunes (2022b,a). The approach enables the

Journal of Statistical Software 3

practitioner to estimate both the time-varying mean and dependence structure of a univariate
time series

Xi=Ti+e&, 0<t<n-—1, (1)

where T; represents a smooth deterministic trend function and &; is a mean-zero nonstation-
ary noise term assumed to follow an LSW model, details of which will be specified fully in
Section 2.

The TrendLSW package implements the work of McGonigle et al. (2022a,b), building upon
the tools provided in wavethresh to include a nonstationary trend component. This enables
the estimation of both first- and second-order properties of a nonstationary time series within
the same software package. The TrendLSW package (McGonigle, Killick, and Nunes 2026) is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=TrendLSW.

The remainder of the article is organized as follows. A brief background to wavelets and a
description of the TLSW model is given in Section 2. Section 3 describes the estimation of the
spectrum and its implementation in R, while Section 4 describes the estimation of the trend
and implementation in R. Section 5 discusses an extended worked example, and section 6
describes two real data examples that highlight the main functionality of the TrendLSW
package. Concluding remarks and discussion are given in Section 7.

2. The Trend-LSW model

This section describes the TLSW model of McGonigle et al. (2022a,b) for analysing nonsta-
tionary time series with trend components.

2.1. Wavelets

Broadly speaking, wavelets are localized, oscillatory basis functions that possess several use-
ful properties not typically enjoyed by Fourier trigonometric basis functions. In the LSW
framework (discrete) wavelets act as building blocks in an analogous fashion to Fourier ex-
ponentials in the classical Cramér representation for stationary processes and spline bases
for mean representations. Let 1 be a compactly supported wavelet, for example any within
the Daubechies family (Daubechies 1992). Denote by {hg, gr} the low- /high- pass filter pair
associated with . The pair {hg, gx} filter a signal into low and high frequency components
respectively. Letting Nj, be the number of non-zero values of {hy}, the filters are related by
the equation gy = (—1)*hy, » (Nason 2008, Equation (2.52)).

Setting L; = (27 — 1)(Ny, — 1) + 1, the discrete wavelets at a given scale j € ZT, as discussed
in Nason et al. (2000), are defined as the vectors 1; = (¥j0,...,%;1,-1) of length L;, where

Y1 =Y gi—2kbok = i, l=0,....,L1 -1, (2)
k

Vv =Y hi—okj, 1=0,...,L; -1, (3)
%

where dgp is the Kronecker delta. The discrete father wavelet is defined similarly using the
associated low-pass filter {hs}. The simplest example of a wavelet basis is the Haar wavelet,

https://CRAN.R-project.org/package=TrendLSW
https://CRAN.R-project.org/package=TrendLSW

4 TrendLSW: Trend Locally Stationary Wavelet Processes in R

which is given by
Yl =279/7 (o <k<2il o 1) — 97l (2]'*1 <k<2 1) ,

where j ={1,2,3,...} and k € Z.
For a good introduction of the use of wavelets in statistics, we refer the reader to Antoniadis,

Bigot, and Sapatinas (2001) and Nason (2008). Other excellent texts on wavelets include
Percival and Walden (2006) and Vidakovic (2009).

2.2. The TLSW process

In this section we define the TLSW process and the key quantities of interest for analysis.
A time series {Xm}?:_ol with n = 27 > 1 for J € N is said to be a trend locally stationary
wavelet (TLSW) process if it admits the representation

o0
Xe=Ti+e =T + Z Z W ki k(0 ks (4)
j=1kez

where {; ;} is a random, uncorrelated, zero-mean orthonormal increment sequence, {w; j.y } is
a set of amplitudes (parameters to estimate), and {1}, is a set of discrete non-decimated
wavelets defined using the discrete wavelets given in Equations 2 and 3. That is, there is
a time-varying trend component and the error component is a locally stationary wavelet
(LSW) process. The trend component T} := T'(¢t/n) in Equation 4 is assumed to be a Holder
continuous function. Furthermore, for each j > 1, there exists a Lipschitz continuous function
W;(z) for z € (0,1) which satisfies the following properties:

1. 322 [Wj(2)]* < 0o uniformly in z € (0,1).
2. The Lipschitz constants L; are uniformly bounded in j and 3272, 2/L; < 0.

3. There exists a sequence of constants C; such that for each n
k C;
s ()]

where for each j > 1 the supremum is over k¥ = 0,...,n — 1 and the sequence {C};}
satisfies > 72, Cj < oo.

The model imposes the standard assumptions on the LSW component in the literature, allow-
ing for locally stationary dependence structure. Model 4 also permits nonstationary first-order
behavior by incorporating a smooth mean function 7. Whilst the formal definition requires
n = 27, in practice the boundary handling method described in McGonigle et al. (2022b) can
be used to analyze time series of arbitrary length. Note that there is explicit dependence on
n in the model, but this notation is suppressed for clarity of presentation.

As with classical time series theory, the key quantity of interest for characterising dependence
structure is the spectrum. The evolutionary wavelet spectrum (EWS) of an LSW process is
defined as S;(z) = W;(z)? for rescaled time z = k/n € (0,1) and measures the contribution
to variance at a particular rescaled time z and scale j. The local autocovariance (LACV)
function for a LSW process provides information about the covariance at a rescaled location

Journal of Statistical Software 5

z = k/n € (0,1). The LACV, ¢(z,7), of a LSW process with EWS {S;(2)} is defined as
c(z,7) = 3721 8;(2)¥;(7), for T € Z, z € (0,1). The LACV is a decomposition of the
autocovariance of a process over scales and rescaled time locations, and converges to the
process autocovariance ¢ (z,7) = E(g|.,)€|.n)+-) With increasing sample size n.

Simulating realizations of a TLSW process

We can simulate an example realization of a TLSW process with a specified trend and given
EWS using TLSWsim().

The input arguments for TLSWsim() are:

e trend: The trend component of the time series, which can be either a numeric vector
of length n, or a function of a single argument on rescaled time (0, 1).

e spec: The spectrum that defines the dependence of the time series. This can be either
a numeric J X n matrix, or a list of length J with each element given by a function
of a single argument on rescaled time (0,1) (scales where S;(z) = 0 for all z can be
represented by the NULL value). For readers familiar with the wavethresh package, this
argument can also be given as an object of class wd.

e filter.number: This specifies the number of vanishing moments of the wavelet in the
TLSW model 4 i.e., selects the smoothness of wavelet that you want to use in the
decomposition. By default this is 4.

e family: Specifies the family of wavelets that you want to use in the TLSW model. The
options are "DaubExPhase" (default) and "DaubLeAsymm".

e innov.func: The function used to generate the innovation sequence {{;1}. By default,
this is rnorm().

We note that it is also possible to simulate TLSW processes of non-dyadic length n, provided
that the trend and spec arguments are provided as a numeric vector of length n and numeric
matrix of dimensions [logy(n)] X n respectively. The recommended choices for the family
argument are "DaubExPhase" or "DaubLeAsymm", corresponding to the Daubechies Extremal
Phase and Daubechies Least Asymmetric wavelet families respectively. For these families, the
filter.number argument can be an integer between 1—10 and 4—10 respectively, representing
the number of vanishing moments of the wavelet (the Haar wavelet is the Extremal Phase
wavelet with 1 vanishing moment).

The example below generates a time series of length n = 512 where we impose a cubic trend
T, = 3(32(t/n)® — 48(t/n)? + 22(t/n) — 3) and an EWS with a quadratically increasing and
decreasing power at level j = 2, as well as constant power at level j = 4 i.e., So(t/n) =
2+12(t/n) — 12(t/n)? and S4(t/n) = 2. The specification of the trend is given as a function,
and the EWS is defined using a list of functions:

R> n1 <- 512

R> trendl <- function(z) { 3 * (32 * z™3 - 48 * z™2 + 22 * z - 3) }
R> specl <- vector(mode = "list", length = log2(n1))

R> spec1[[2]] <- function(z) { 2 + 12 * z - 12 * z™2 }

R> spec1[[4]] <- function(z) { 2 }

6 TrendLSW: Trend Locally Stationary Wavelet Processes in R

I I I I I
0 100 200 300 400 500
Time

Figure 1: Example TLSW process generated with cubic trend function and spectrum with
power at scales 2 and 4. Solid red line shows the true underlying trend function.

R> set.seed(123)
R> x1 <- TLSWsim(trend = trendl, spec = specl, filter.number = 4)

Figure 1 shows the resulting simulated time series from the TLSW model, where time-varying
behavior in the trend and variability can be seen.

Estimation

Given an observed time series which we model using (4), we are interested in estimating the
following three quantities:

1. The spectrum (EWS) {S;(t/n) }3-]11 for all time locations ¢t = 0,...,n—1, with maximum
scale of interest Jy < J,

2. The autocovariance (LACV) ¢(t/n,7) for some 7 of interest and t = 0,...,n — 1 (and
associated local autocorrelation ¢(t/n,7)/c(t/n,0)),

3. The trend T} for t =0,...,n — 1.

We consider the estimation of these quantities in the following sections.

The main function within the package is TLSW(), which allows the user to simultaneously
estimate both the trend and spectrum of a TLSW process. The package provides two separate,
but related, approaches to estimate the trend component of the process. Similarly, there
are two approaches implemented for estimating the EWS, each aimed to be used with the
corresponding trend estimation.

In Section 3, we describe the two ways in which EWS estimation can be performed, and in
Section 4 we describe the methods for trend estimation. In Section 5 we provide worked
examples highlighting how these approaches can be applied together using TLSW().

Journal of Statistical Software 7

3. EWS estimation

In what follows, we discuss two approaches for estimating the EWS in the presence of trend.
Analogously to classical Fourier methods, we base our estimation procedure on the wavelet
periodogram, with some modifications to account for the presence of the trend function.
Depending on the properties of the trend function, we give two related but different strategies
for estimating the EWS. The general approach for both estimation methods consists of three
main steps:

1. Calculating the wavelet periodogram using a nondecimated wavelet transform.
2. Smoothing the wavelet periodogram.
3. Obtaining the spectral estimate by bias correction of the wavelet periodogram.

Below, for each of the two methods, we describe these three steps in more concrete detail.
The key distinction between the two approaches is that the first directly estimates the EWS
accounting for the trend within the estimation. The second approach differences the data and
estimates the EWS within the differenced data, then corrects for the effect of the differencing.
We first describe the direct estimation approach before detailing the differencing approach.

3.1. Direct estimation

To construct the wavelet periodogram, we calculate the nondecimated wavelet coefficients of
the time series {Xt}?z_ol. For a given location k and scale j, the wavelet coefficient d;, is
defined as d; = >, Xy9; 1 (t). The periodogram is then constructed as I = d?k

If the trend T'(t/n) is smooth and does not display irregularities such as cusps or discontinu-
ities, then the wavelet transform coefficients d;; will be largely free from the effects of the
trend. This is due to fact that wavelets naturally act as differencing operators over different
time-scales. As mentioned in Section 2.2, wavelets within both the Daubechies Extremal
Phase and Least Asymmetric families are constructed to have a given number of vanishing
moments. For a wavelet with m vanishing moments, all wavelet coefficients of a polyno-
mial trend function with degree at most m — 1 will be zero. Therefore, provided the trend
function is well-approximated by a polynomial, this useful property of wavelets ensures that
the wavelet coefficients, and therefore the wavelet periodogram, are not contaminated by the
trend function.

Let the operator A = (Aj;); ;>0 be given by Aj; = > ¥;(7)¥;(7), where the autocorrelation
wavelets W;(-) are defined by W;(7) := 3 1c7 % k(0)Y;(7), for j > 0,7 € Z. Assuming we
use a wavelet with m vanishing moments and the trend function is polynomial of degree at
most m — 1, then, mirroring a result from Nason et al. (2000), McGonigle et al. (2022b) show
that the expectation and variance of the wavelet periodogram are given by

E(Lix) ~ Y AuSi(k/n), (5)
l
2
VaI‘(Ich) ~ 2 <Z Ajlsl(kj/n)> , (6)
l
where ‘=’ denotes asymptotic equivalence with increasing sample size n. This expression also

holds for Holder continuous trend functions but with a larger finite sample bias than polyno-
mial trends. Equations 5 and 6 show that the wavelet periodogram is a biased, inconsistent

8 TrendLSW: Trend Locally Stationary Wavelet Processes in R

estimator of the EWS. Therefore, the periodogram is first smoothed, then bias corrected, in
order to yield a consistent estimator, which motivates steps 2 and 3 above.

The standard approach to smoothing (step 2) is to use some form of linear kernel smoothing.
Here we explicitly describe smoothing using a running mean, but note that the TrendLSW
package also implements median smoothing and Epanechnikov kernel smoothing. For bin
width size 2N + 1, the smoothed wavelet periodogram is given by

_ 1 N

Step 3 then bias corrects the smoothed periodogram. The resulting estimator is given by
S;j(k/n) = ZAIJ Lk, (8)

and the LACV is estimated using §](k:/n) with the equation é(k/n,) = Zj;l_J §j(l<:/n)\1»'J (7).
The standard approach works well enough in zero-mean cases. However, the caveat of the
above discussion is the occurrence of well-known boundary effects; near the end-points of the
time series, where the wavelet filter is of large enough size, wavelet coefficients are computed
using reflections of the data, resulting in artefacts. The coarser the scale j, the larger the
wavelet filter, and therefore the more pronounced these boundary effects are. These are more
problematic in datasets containing non-zero trends. In a practical setting, if the trend is not
exactly polynomial, which is often the case in reality, the wavelet coefficients of the trend will
not be exactly zero and will be increasingly contaminated at larger scales due to the larger
filter length. To mitigate this problem we propose two simple solutions.

The first step involves changing the way that the wavelet transform is performed to improve
performance at the boundaries (step 1). Briefly, we use a modification of reflective boundary
handling that projects the trend smoothly at the boundaries. This helps to minimize boundary
problems and can also be applied to time series of arbitrary length, removing the restrictive
assumption in the wavethresh package that the time series length must be dyadic. For full
details, see Section 4.4 of McGonigle et al. (2022b).

The second mitigation strategy involves discarding some of the coarsest wavelet scales used
in the periodogram bias correction (step 3 above). Instead of using all J available scales
as is customary in LSW modeling (see e.g., Nason et al. 2000), we instead use Jy < J
scales. This can be thought of as a type of tapered estimator. Using Jy < J scales improves
practical performance of the estimators in the presence of trends, and reduces the variability
of the resulting estimator by discarding wavelet coefficients at coarser scales, which become
increasingly autocorrelated. McGonigle et al. (2022b) show the consistency of these estimators
and demonstrate the superiority over the standard estimators of Nason et al. (2000) in the
presence of trends.

Thus the final TLSW estimator is given by
k/n ZAl] Ilka (9)

and the LACV is estimated using gj(k/n) with the equation é(k/n, 1) = Zjil @(k/n)\llj (7).

Journal of Statistical Software 9

3.2. First-differenced estimation with modified correction factor

The first approach described above works well when the trend function does not display cusps.
However, in the presence of such irregularities, the wavelet transform may fail to remove the
trend function, causing the EWS estimator to be biased. In particular, wavelet coefficients at
coarser scales will suffer from increased bias due to the increased filter length. Furthermore,
since the periodogram must be corrected across scales, the bias at coarser scales can appear
at finer scales.

To solve this problem, we can use the commonly used practice of differencing. Before applying
the wavelet transform, we first difference the time series to yield {AX; = Xy11 — X, ?:_11.
Differencing allows us to remove the trend immediately, ensuring that the wavelet trans-
form does not accumulate large bias across increasing scales. Then, the wavelet coefficients
‘Zj,k = > AXyj (t) are computed on the differenced time series, from which the wavelet
periodogram I = d?;k is constructed. It is possible to use higher order differencing, e.g.
second differencing, however we advise against this due to the inherent loss of information
and poorer empirical performance as demonstrated in McGonigle et al. (2022a).

Estimation then proceeds as before, with one key distinction. Due to the differencing trans-
form, the dependence structure of the time series is changed. Therefore, the bias in the wavelet
periodogram is no longer characterized by the matrix A = (Aj;);j>0, but instead a related
matrix D! = (Djl'l)j,l>0- The entries of the modified bias matrix are given by D}l =A - Ajl.l
where A}l =3, U,;(1)¥;(r — 1), and we have that

g k
l

Therefore, we can proceed similarly to before, first smoothing the periodogram by for example

using a running mean:

o~ 1 N

I = I;
L,k ON +1 mZN 7,k+m

and then correcting using the matrix (D!)~!, giving the estimator

Jo N
Si(k/n) =3 (D) i,
=1
where, as seen with the direct estimation approach, we opt to use a tapered estimator with
maximum scale of interest Jy < J. Analogously, for a more complex trend component, second
differences can also be used. If the time series is known to have a seasonal trend of period
p, then the spectrum can be instead estimated using the wavelet periodogram of the lag p

differenced time series:
Jo

Sj(k/n) = Z(DZ)_lfz,kj (10)
=1

where D) = Aj — A with A% = 37 W;(7)¥(7 — p). For more details, we refer the reader
to McGonigle et al. (2022a). The local autocovariance can be estimated using this spectrum
estimate in the same manner as the direct estimator, with é(k/n,) = 23-]0:1 Si(k/n)¥;(T).

3.3. EWS estimation using TLSW

10

TrendLSW: Trend Locally Stationary Wavelet Processes in R

In the TrendLSW package, the EWS estimation is performed as part of TLSW (), which will, by
default, directly estimate the trend function and spectrum simultaneously. Here, we describe
how the spectral estimation component of TLSW() is carried out.

To indicate to TLSW() that the user wishes to compute the spectral estimate, the argument
do.spec.est should be set to TRUE (default). Then, the essential arguments to perform
spectral estimation in TLSW() are:

x: The input time series.

S.filter.number: The filter number of the wavelet used to estimate the EWS. By
default this is equal to the T.filter.number argument used in trend estimation (see
Section 4), which by default is 4. Larger values are smoother, "DaubExPhase" can take
values 1-10 and "DaubLeAsymm" values 4-10.

S.family: The family of the wavelet used to estimate the EWS. By default this is equal
to the T.family argument used in trend estimation, which by default is "DaubExPhase";
"DaubLeAsymm" is an alternative.

S.smooth: Logical indicating whether to smooth, default TRUE.

S.smooth.type: The type of smoothing to be used on the wavelet periodogram. By
default this is "mean" for running mean smoothing, but it can also be "median" for
running median, or "epan" for Epanechnikov kernel smoothing.

S.binwidth: The bin width parameter in the wavelet periodogram smoother; this was
2N + 1 in Equation 7. By default this is [6y/n].

S.max.scale: The maximum wavelet scale to be analyzed, Jy in Equation 9. By default
this is [0.71logyn .

S.boundary.handle: A logical variable, with default value TRUE, indicating whether
the boundary handling procedure is used.

S.inv.mat: The user can precalculate and supply a correction matrix to correct the
raw wavelet periodogram. If left blank, then the correction matrix is calculated when
performing spectral estimation.

S.do.diff: A logical variable, to indicate whether the time series should be differenced
first before the wavelet periodogram is calculated. If TRUE, then the differencing ap-
proach is carried out from Section 3.2, otherwise the direct estimation approach is used
from Section 3.1. By default this is FALSE.

S.lag: If S.do.diff = TRUE, the lag of the differencing operator to apply. The default
choice is 1, whilst larger values could be used if there is seasonality at a given lag
(e.g., lag 12 could be used in monthly data).

S.diff.number: The number of times differencing is applied to the time series if the
argument S.do.diff = TRUE. The strongly recommended default is 1 to perform a
first difference, but can be set to 2 to perform second differencing as opposed to lag 2
differencing.

Journal of Statistical Software 11

Spectral Estimate

Scale

1 2 3 45 6 7 8 9
|

T T T T I
0 128 256 384 512

Time

Figure 2: Spectrum estimate for the TLSW process x1 given by the (default) direct estimator
using TLSWQ).

All arguments related to spectral estimation begin with the prefix S. By default, no differ-
encing will be performed, so that the direct spectral estimation method from Section 3.1 is
performed. Default values for wavelet choice, maximum scale Jy, and bin width, have been
set to align with numerical studies carried out in McGonigle et al. (2022a), McGonigle et al.
(2022b), and widely accepted in the literature. All other arguments necessary for estimating
the spectrum have been given default values based on extensive numerical studies. Therefore,
basic estimation of the spectrum of the time series x1 without manually adjusting tuning
parameters can be performed by supplying x1 to TLSW() as follows:

R> x1.TLSW <- TLSW(x1)

TLSW() returns an object with S3 class TLSW; a list which contains several of the quantities also
returned by ewspec3() from the locits R package, as well as additional input parameters.
Outputs associated to the spectrum estimation are stored in the spec.est element of the
TLSW object, itself a list. In this list, the corrected, smoothed spectral estimate is stored in
the S component, whilst the unsmoothed and smoothed wavelet periodograms are stored in
the WavPer and SmoothWavPer components respectively. As in the wavethresh package, these
three components are of class wd and can be plotted using the plotting functionality therein,
as well as being amenable to print () or summary ().

A TLSW object can be plotted using plot () as standard: this can plot spectrum and/or trend
estimates with a number of options available to the user. For now, we will focus on the
produced spectrum plot, and return to more details of plot functionality in a worked example
in Section 5. Using plot (), we supply the TLSW object, and for now we specify the argument
plot.type = "spec" to only plot the estimated spectrum:

R> plot(x1.TLSW, plot.type = "spec")

The resulting spectrum estimate is shown in Figure 2. The general features of the spectrum
are well-represented in the estimate: scales with no power are generally estimated close to zero,

12 TrendLSW: Trend Locally Stationary Wavelet Processes in R

(ee]
@
LS
O o
>
o |
o
N
S -

| T T T T T

0 5 10 15 20 25

Lag

Figure 3: Local autocorrelation estimate for the TLSW process x1 at three time points ¢ = 50
(blue solid line), ¢t = 200 (red dashed line), and ¢ = 350 (black dash-dotted line).

whilst scale 4 appears to have (near) constant power over time. The increasing and decreasing
behavior at scale 2 is also quite clear. Note that nonstationary spectrum estimation is an
extremely challenging problem, due to factors including strong autocorrelation and low signal-
to-noise ratio. Therefore, spectral estimates are not necessarily expected to be as accurate
(as compared to the estimate of the trend function in Section 4).

The local autocovariance and autocorrelation of the times series can be computed from the
spectral estimate using TLSWlacf (). The user can set a maximum lag for calculating the
autocovariance in the same way as in stats::acf (), by specifying a value for the lag.max
argument. TLSWlacf () takes as input a TLSW object produced from TLSW(), and outputs a
list object of class lacf, which is identical to the output of lacf () in the locits package.
The key outputs are lacv and lacf, which correspond to the estimated local autocovariance
and autocorrelation respectively. These are given in matrix form with rows representing
time and columns representing lags. We plot the autocorrelation estimate at time points
t = 50,200, 350 as an illustration in Figure 3.

R> x1.lacf <- TLSWlacf (x1.TLSW)

R> plot(x1.lacf$lacr[50,], ylim = c(-0.4, 1), type
+ ylab = "ACF", 1lwd = 2, col = 4)

R> lines(x1.lacf$lacr[200,], col = 2, 1lwd = 2, lty = 2)

R> lines(x1.lacf$lacr[350, 1, col = 1, 1lwd = 2, 1ty = 4)

R> legend(20, 1, c("t = 10", "t = 230", "t 450"), 1ty = c(1, 2, 4),
+ lwd = c(2, 2, 2), col = c(4, 2, 1), bty = "n", cex = 1.2)

”l H, Xlab = "Lagll’

4. Trend estimation

We now turn to describe two procedures for trend estimation in the presence of time-varying
dependence structure. The general approach for trend estimation again consists of three main
steps:

Journal of Statistical Software 13

1. Calculating the wavelet coefficients via a wavelet transform.
2. Thresholding the wavelet coefficients.

3. Obtaining the trend estimate by inverse transforming the thresholded wavelet coeffi-
cients.

Here, the distinction between the two approaches lies in how the wavelet thresholding is
performed. Mirroring Section 3, the following sections discuss in detail how the two methods
are implemented before exploring the package structure.

4.1. Linear wavelet thresholding estimator

In the case where the the trend function is sufficiently smooth, and the EWS was estimated
using the direct approach described in Section 3.1, then we recommend to estimate the trend
function using a linear wavelet thresholding estimator in the spirit of e.g., Craigmile, Guttorp,
and Percival (2004). Observe that, when the trend is exactly a polynomial, using a wavelet
with high enough vanishing moments will result in zero wavelet coefficients apart from at
the boundaries; the zero mean assumption for the the LSW increment process in (4) means
that the wavelet coefficients have expectation zero. Thus the boundary wavelet coefficients
and the scaling coefficients will be the only coefficients to meaningfully contribute to the
trend component. Likewise, if the trend is closely approximated by a polynomial, the trend
component is well-represented by only the boundary and scaling coefficients.

We hence proceed as follows. First we perform a discrete wavelet transform (DWT) of the
time series with a given choice of wavelet 1) and a prespecified coarsest scale Jy, similar to the
spectral estimation procedure. Setting the non-boundary coefficients to zero will reflect the
above observation on these coefficients being zero mean, in effect performing hard thresholding
of the non-boundary coefficients, so that performing the inverse discrete wavelet transform
will obtain a trend estimate. McGonigle et al. (2022b) show that this procedure results in
an unbiased and mean square consistent estimator of the trend when the true underlying
trend is polynomial or Holder continuous. Experiments have shown that in practice, setting
a coarsest scale of Jy = |0.71ogy(T")] is robust to a wide range of process scenarios.

To obtain robust estimation of the trend at the boundary of the series, McGonigle et al.
(2022b) suggest using a procedure akin to classical boundary handling in wavelet methods, in
which a long series of length 3n is constructed by reflecting the time series data so that the
original series is at the centre of the newly constructed data. Performing trend estimation on
this longer series mitigates the fact that, particularly at coarser scales, the wavelet filter can be
longer than the available data near the boundary. Note that a nondecimated discrete wavelet
transform (NDWT) can be performed instead of the DWT to represent more temporally-
localized behavior in the series, in which case basis averaging is used to obtain the trend
estimate after hard thresholding, see e.g., Nason et al. (2000, Chapter 3.12) for more details.
The key difference between the DWT and NDWT is that DWT forms an orthogonal basis
whereas the NDW'T is an overcomplete basis representation. The DWT downsamples the data
at each step of the algorithm to obtain a sparse (efficient) representation of the underlying
signal. The disadvantage of this is that if the data is shifted by a single place to the left or right,
the DWT representation can change dramatically (not just shifted one to the left/right). In
contrast, the NWDT is translation-invariant as it considers all potential paths of shifting and
downsampling the data at each step of the algorithm and does not suffer from this drawback.

14 TrendLSW: Trend Locally Stationary Wavelet Processes in R

When the DWT is used, pointwise (1 — a)% confidence intervals for the trend can be derived
under the assumption of normality, via

T, + 70 9 Var (ﬁ), (11)

where the variance term can be estimated using the (consistent) estimate of the local auto-
covariance é(k/n,7) = j_:l_JO g](k/n)\l/](T)

When the NDWT is used, pointwise confidence intervals are computed via the bootstrap,
in a similar fashion to the approach of Friedrich, Smeekes, and Urbain (2020). For some
chosen total number of bootstrap replications, B, bootstrapped replications {be)}?;ol for
b=1,...,B can be simulated using the spectral estimate and trend estimate, from which
bootstrapped trend estimates can be calculated.

Concretely, using the spectral estimate {S’J(k/n) 3-]&1, for k = 0,...,n — 1, and the trend

estimate ﬁ, bootstrapped replications
b - _ b
X =T+ 3 @atbierbsn
ik

are generated, where w; j = gj(k /n)Y/?, and §§f),z are independent, identically distributed stan-
dard Normal random variables. For each of the B bootstrapped replications, a bootstrapped
trend estimate {ft(b)}?z_ol is obtained using the linear wavelet thresholding procedure as de-
scribed above. Then, for each time point ¢ = 0,...,n — 1, pointwise (1 — «)% confidence
intervals can be calculated using either:

1. A normal approximation ZA} tq,_a \/Var(ﬁ), where the variance term is the sample
2

variance of the B bootstrapped trend estimates at time t.

2. The empirical §% and (1 — §)% quantiles of the B bootstrapped trend estimates.

4.2. Nonlinear wavelet thresholding estimator

In the case where the EWS is estimated using the differencing approach of McGonigle et al.
(2022a) described in Section 2.2, then we recommend to estimate the trend function us-
ing a nonlinear wavelet thresholding estimator, using the spectral estimate @(k:/n) from
Equation 10. More specifically, we employ classical wavelet thresholding to provide a trend
estimate. For a particular wavelet basis used for thresholding, {%{k}j’k, we first compute the
corresponding DWT wavelet coefficients of the series X, d}n,s =3 th}yk(t), where we use
the notation d71n7 s to differentiate from the wavelet coefficients corresponding to the generating
wavelet in model 1. The coefficients are then thresholded using a coefficient-specific hard or
soft threshold

o2, = sgn(dl)(|dr s — Arsn)I(|drg| > Arsn) (soft thresholding)
ol = dlI(|dl | > M), (hard thresholding)
where A(r,s,n) = 6, 4y/2log(n) and &, is an estimate of the standard deviation of the

coefficient d}w. This estimate can be obtained from the expression for the variance of the

Journal of Statistical Software 15

wavelet coeflicients

Var(d1 Z Sl (s/n), (12)

where C’rl,”lo = >, UY(r)¥}(r) is computed using the autocorrelation wavelets ¥2(r) and
\Illl (7) corresponding to the generating wavelet 1) and thresholding wavelet ¢! respectively
(McGonigle et al. 2022a). The estimate and therefore the coefficient-dependent threshold
A(r, s,n) is computed by plugging in the spectral estimate §j(k/n) from Equation 10 into
Equation 12; a trend estimate ft can then be obtained by performing the inverse DWT on
the coefficients {0y s}y s.

As in the linear wavelet thresholding approach, a prespecified coarsest scale Jy is set for
the wavelet decomposition. Stronger estimation performance is also achieved using so-called
translation-invariant (TI) denoising, in which the thresholding procedure described here is
performed on the coefficients resulting from an NDW'T on the data, followed by basis averag-
ing; see von Sachs and MacGibbon (2000) or McGonigle et al. (2022a). Boundary handling
can also be performed, in a similar manner to that described for the linear wavelet estimator.
Lastly, pointwise (1 — a)% confidence intervals can be construted via bootstrapping in an
analogous way to that described for the linear wavelet estimator.

4.3. Trend estimation using TLSW

Both trend estimation procedures described above can be performed using TLSW(), setting
the do.trend.est argument to TRUE (default). By default, the function will use the linear
wavelet estimator (paired with direct spectrum estimation), but the nonlinear (translation-
invariant) wavelet-based estimation can be chosen by setting the T.est.type argument to
"nonlinear".

For both linear and nonlinear wavelet trend estimation, the following arguments can be spec-
ified by the user:

T.filter.number: The filter number of the wavelet used to estimate the trend. By
default this is 4.

e T.family: The family of the wavelet used to estimate the trend. By default this is
"DaubExPhase".

e T.transform: The type of wavelet transform used in the thresholding estimator, either
"dec" (DWT) or "nondec" (NDWT, default).

e T.boundary.handle: A logical variable, with default value TRUE, indicating whether
the reflection-based boundary handling procedure should be performed.

e T.max.scale: The maximum wavelet scale to be used in the wavelet transform, Jy. By
default this is |0.7logyn].

e T.CI: A logical variable, to indicate whether a pointwise confidence interval for the
trend should be computed. By default this is FALSE.

e T.sig.lvl: A significance level, a for the constructed confidence interval, defaulting to
0.05.

16 TrendLSW: Trend Locally Stationary Wavelet Processes in R

Trend Estimate

10

-5

I I I I I
0 100 200 300 400 500
Time

Figure 4: Trend estimate (red) for the TLSW process x1 given by the linear wavelet estimator
described in the text using TLSW(). Underlying data given by gray line.

e T.reps: The total number of bootstraps, B, used in the construction of pointwise
confidence intervals, if T.CI is TRUE, defaulting to B = 200.

e T.CI.type: The type of constructed confidence intervals, if T.CI is TRUE. By default this
is "normal, which uses the normal approximation quantiles to construct the interval,
else "percentile" for which empirical quantiles are used in the construction.

o T.lacf.max.lag: The maximum lag used for calculating the lacf, default is [10logn],

For the nonlinear trend estimation, as well as the arguments above, the user can specify the
following additional arguments associated to how the wavelet thresholding is performed:

o T.thresh.type: The type of thresholding used in the nonlinear quantiles trend estima-
tion procedure, either "hard" (default) or "soft".

e T.thresh.normal: A logical variable, indicating whether to use a larger threshold,
useful to disable for non-Normally distributed data. Defaults to TRUE, in which case
A(r,s,n) = 6y 51/21og(n) is used, if FALSE, then \(r, s, n) = 6, clog(n) is used.

In a similar fashion to that described in Section 3, we can use plot() on the x1.TLSW object
to plot the trend estimate, by supplying the argument plot.type = "trend" only the trend
is plotted:

R> plot(x1.TLSW, plot.type = "trend")

The resulting plot is shown in Figure 4, which shows close alignment between the estimated
and true trend function.

Journal of Statistical Software 17

5. Trend and EWS worked example

Having described the main functionality of the package, in this section we give an extended
worked example combining both trend and EWS estimation. We simulate a realization of a
TLSW process with trend function given by:

[5sin(6rt/n) + 10t/300, 0 < t < 300,
5sin(67t/n) — 4 — 14t/(n — 300) — 14n /(300 —n), 301 <t < n.

i.e., a composition of a sinusoidal component, and a piecewise linear trend starting at 0,
increasing to 10 at time point 300, then decreasing to —4 at time point n. The spectrum is
given by:

8t/n + 2, j=1, 0<t<n,

1, j=3, 0<t<200
8 (t/n) = (5/200)t — 4, j=3, 200<t<400

—(5/200)t +16, j =3, 400 <t < 600

1, j=3, 600<t<n

2+ 4sin(4nt/n)?, j=5 0<t<n.

i.e., a linearly increasing power at scale j = 1, piecewise linear with peak in power at time
point 400 at scale 3, and sinusoidal power at scale j = 5. This time, we specify the trend
function in R using a numeric vector, and specify the spectrum using a matrix of numeric
values, as follows:

R> n2 <- 1024

R> index2 <- seq(from = 0, to = 1, length = n2)

R> trend2 <- 5 * sin(pi * 6 * index2) +

+ c(seq(from = 0, to = 10, length = 300),

+ seq(from = 10, to = -4, length = 724))

R> spec2 <- matrix(0, nrow = log2(n2), ncol = n2)

R> spec2[1,] <- seq(from = 2, to = 10, length = n2)

R> spec2[3,] <- c(rep(1, 200), seq(from = 1, to = 6, length = 200),
+ seq(from = 6, to = 1, length = 200), rep(1, 424))

R> spec2[5,] <- 2 + 4 * sin(4 * pi * index2)2

As before, we simulate the TLSW process via TLSWsim():

R> set.seed(1234)
R> x2 <- TLSWsim(trend = trend2, spec = spec2)

In Figure 5 we plot x2, along with the true underlying trend function and spectrum.

For estimating the trend and spectrum of this TLSW process, we make some modifications
to the default arguments of TLSW() to highlight some potential ways a user can customize
the estimation procedure. The following code snippet fits the TLSW model to x2 shown in
Figure 5:

R> set.seed(10)

18 TrendLSW: Trend Locally Stationary Wavelet Processes in R

2 o
- —
N_
o _|
- o —
AT
>Z 8 e e et
(%) o
o_
@_
~ o ————nt—
S - o —
|
@_L4
I I I I I I I I I I I
0 200 400 600 800 0 256 512 768 1024
Time Time

Figure 5: Left: Plot of an example realization of the TLSW process x2, with true trend line
given in red solid line. Right: True underlying spectrum.

R> x2.TLSW <- TLSW(x2, T.filter.number = 6, T.family = "DaubLeAsymm",
+ T.est.type = "nonlinear", T.CI = TRUE, T.reps = 500,

+ S.filter.number = 4, S.family = "DaubExPhase", S.do.diff = TRUE,
+ S.smooth.type = "median", S.binwidth = 128)

In this example, we perform trend estimation using nonlinear thresholding, and use the
Daubechies Least Asymmetric wavelet with 6 vanishing moments for trend estimation. The
choice of wavelet is an important consideration in wavelet analysis, and is akin to selecting
the kernel in nonparametric modeling. It is recommended to check the robustness of any con-
clusions to the choice of wavelet: the best performing wavelet will depend on the unknown
trend function. A pointwise confidence interval is calculated for the trend estimate (which by
default is at the 95% significance level) using 500 bootstrap replications.

The resulting estimate is shown in Figure 6, which aligns closely with the true trend function.
By default, the calculated confidence interval is plotted, but this can be changed by setting
the argument plot.CI = FALSE when calling plot (). As expected, the confidence intervals
tend to be wider at the boundaries due to the boundary handling procedure and boundary
effects.

The spectrum estimate is computed with the Daubechies Extremal Phase wavelet with 4 van-
ishing moments, using the differenced time series, (paired with the nonlinear trend estimate)
and smoothed with a running median of bin width size 128. A running median can be used
for additional robustness in the estimator; for further information see McGonigle, Killick, and
Nunes (2021). A smaller bin width is used due to the quickly evolving spectral structure.
The estimate is shown in Figure 7. The estimate correlates well with the general features of
the underlying spectrum, such as the slowly increasing power at scale 1, bump at scale 3, and
the periodic pattern at scale 5.

Journal of Statistical Software 19

Trend Estimate

20

10

-10

I I I I I
0 200 400 600 800 1000
Time

Figure 6: Estimated trend function (red solid line) with 95% pointwise confidence interval
given by the blue shaded region and dashed blue lines. Original time series shown in gray
solid line.

Spectral Estimate

o 4
© -
~ 4
Q
© “° 7
am_A GEURT || T—
< 4
» -
~ 4
o - eeeee L] [T
T T T T T
0 256 512 768 1024
Time

Figure 7: Estimated spectrum. Scaling is applied globally across each scale for direct com-
parison.

5.1. Making modifications to spectrum and trend estimation plots

In Sections 3-5 above, we used default settings to produce plots of the spectrum and trend
estimates with the TrendLSW package. However, the underlying method plot.TLSW() has
flexible functionality to allow practitioners to create user-controlled plots of the estimated
quantities of interest from the TLSW model. More specifically, the style of the plots is
controlled by the following arguments:

e trend.plot.args: A list object, giving options to modify the plotting of the TLSW
trend estimate, with structure specified as follows:

20 TrendLSW: Trend Locally Stationary Wavelet Processes in R

Trend Estimate

20

10

-10

I I I I
0 200 400 600 800 1000
Time

Figure 8: Plot of the trend estimate for the TLSW process x2 given by the code snippet in
the text.

— Graphical parameters related to the display of the overall plot are inherited from
plot.default and are specified in the usual way: for example, to change the title
of the plot to “Plot", use main = "Plot".

— Parameters affecting the display of the estimated trend line should begin with the
prefix “T.". For example, to set the color of the trend line to blue, use T.col =
"blue".

— Parameters affecting the display of the confidence interval lines should begin with
the prefix “CI.". For example, to set the line width of the confidence interval to
2, use CI.1lwd = 2.

— Parameters affecting the display of the polygon drawn by the confidence interval
should begin with the prefix “poly.". For example, to set the color of the confidence
interval region to green, use poly.col = "green".

e spec.plot.args: A list object giving options to modify a plot of the TLSW spectrum
estimate, for example axes specification, inherited from plot.wd.

e plot.CI: A logical variable indicating whether the confidence interval of the trend
estimate (if calculated) should be displayed.

e ...: Any additional parameters that will modify both the trend and spectrum plots,
e.g., cex.main = 2.

We now give an example of this plotting functionality for the x2 example. The code be-
low plots both the trend and spectral estimate as in the example from Section 3.3, with
modifications to the graphical parameters of the plot.

R> plot(x2.TLSW, trend.plot.args = list(col = "black", type = "p", pch = 16,
+ T.col = "blue", T.1lwd = 2, poly.col = "gray",

+ CI.col = "purple", CI.lwd = 2, CI.1ty = 1),

+ spec.plot.args = list(scaling = "by.level"”, ylab = "Level"))

Journal of Statistical Software 21

Spectral Estimate

Level
1 2 3 45 6 7 8 9
1

0 256 512 768 1024
Time

Figure 9: Plot of the spectrum estimate for the TLSW process x2 given by the code snippet
in the text. Each level is scaled individually.

This produces a modified plot of the trend and spectrum for the x2 series. The features
of the trend estimate plot are changed by supplying options to the trend.plot.args argu-
ment in the form of a list. The underlying data in the trend plot have been changed to be
black circles, by setting col = "black", type = "p", pch = 16 in the trend.plot.args
argument. The color and line width of the trend estimate are set using T.col = "blue",
T.1lwd = 2 inside trend.plot.args. The color of the confidence interval’s shaded region is
set using poly.col = "gray", and the features of the confidence interval lines are changes
using CI.col = "purple", CI.lwd = 2, CI.lty = 1. The resulting trend plot is shown in
Figure 8.

Features of the spectrum estimate plot can be changed by supplying options to the argu-
mentspec.plot.args: the scaling on each level of the plot (an option that is inherited
from wavethresh::plot.wd()) is set to be individually scaled by specifying scaling =
"by.level", and the y-axis label has been modified using ylab = "Level". The spectrum
plot is shown in Figure 9.

6. Data examples

We now describe the usage of the various methods described in Sections 3 and 4 to analyze
two real data examples.

6.1. Bioluminescence of Caenorhabditis elegans

Caenorhabditis elegans is an excellent model for high-throughput experimental approaches
(O’Reilly, Luke, Perlmutter, Silverman, and Pak 2014). Notably, C. elegans transgenic strains
have been developed that express the firefly luciferase enzyme to produce bioluminescence to
track the worm metabolic activity over time (Lagido, Pettitt, Flett, and Glover 2008). This
has been applied to studying compound toxicity (Baldock et al. 2023), ageing (Hahm et al.

22 TrendLSW: Trend Locally Stationary Wavelet Processes in R

o
o
o p—
o
o]
3 o
o
< 8
) ©
2
o S
O S
0w 3
Q
£
£ g
S
o p—
0 100 200 300 400 500 600
Time

Figure 10: Bioluminescence of a group of C. Elegans peaks and troughs correspond to group
feeding and growing phases respectively. Black thin line is the observed data, blue thick line
is the TLSW trend fit and the red diamonds are the identified peaks and troughs from the
TLSW trend fit.

2020) and development (Olmedo, Geibel, Artal-Sanz, and Merrow 2015). During its life cycle,
C. elegans goes through four successive larval stages and molts, during which they temporarily
stop feeding and exhibit lower metabolic activity. This can be revealed by bioluminescence
readings when the transgenic worms aforementioned are grown in presence of the luciferase
substrate luciferin, leading to multimodal bioluminescence readings (Figure 10) that are hard
to fit with traditional functions, to automatically extract key parameters (Olmedo et al. 2015).

While manual determination of developmental phases and metabolic activity can be achieved
easily, such assays are typically carried out in multiple batches of 96 or 384 well arrays,
for which manual analyses would take far longer than the experiments themselves. It is
challenging for bioscientists to automatically process bioluminescence traces due to the clear
non-stationary second-order behavior present in the time series. Transitions between molts
and growth phases produce peaks and troughs of varying amplitude and width in these biolu-
minescence time series. Here we seek to measure these by identifying the peaks and troughs
in the estimated trend whilst accounting for the time varying second order properties. The
C. elegans data presented in Figure 10 is a time series of bioluminescence readings from 20
L1 worms (strain PE255) taken every six minutes over a 54h period in a M200 Infinite Pro
Tecan plate-reader captured by Alexandre Benedetto (Lancaster University). The time series
is available as celegansbio within the TrendLSW package. This is one time series taken
from an experiment where hundreds of time series are collected (Baldock et al. 2023).

The following code performs TLSW trend estimation on the C. Elegans time series and
identifies the peaks and troughs within the estimated trend to produce Figure 10.

R> data("celegansbio")
R> out <- TLSW(celegansbio, T.filter.number = 10, T.family = 'DaubExPhase')

Journal of Statistical Software 23

o

s

S — EP10

[ee]

--- EP1

S [T EP4 /

o
< 8- LAL0 Pt
Q © Vi
[S] i
()] o
O g 1
v g
[}
£
£ 5. ,
— 8 o {'(

/—(‘1
O o et -
I I I I I I I
0 100 200 300 400 500 600

Time

Figure 11: Comparison of TLSW trend fits obtained using: the EP10 wavelet (blue solid
line), EP1 wavelet (black dashed line), EP4 wavelet (red dotted line), LA10 wavelet (green
dot-dashed line).

R> plot(out, plot.type = "trend", trend.plot.args =

+ list(ylab = "Luminescence (AU)", T.col = "blue", T.lwd = 3, main = ""),
+ cex.lab = 1.3, col = "black")

R> delta <- diff(out$trend.est$T)

R> turns <- which(delta[-1] * delta[-length(delta)] < 0) + 1

R> points(turns, out$trend.est$T[turns], col = "red", pch = 18, cex = 2)

It can be beneficial to fit a range of wavelets and assess the visual fit to the data in order
to choose the most appropriate wavelet for trend estimation. In the code below, we compute
the trend estimate for a range of wavelets.

R> out.EP1 <- TLSW(celegansbio, T.filter.number = 1,

+ T.family = "DaubExPhase", T.transform = "nondec")
R> out.EP4 <- TLSW(celegansbio, T.filter.number = 4,

+ T.family = "DaubExPhase", T.transform = "nondec")
R> out.LA10 <- TLSW(celegansbio, T.filter.number = 10,
+ T.family = "DaubLeAsymm", T.transform = "nondec")

We can then visually compare the fitted trends, as shown in Figure 11.

R> plot(out, plot.type = "trend", trend.plot.args =

+ list(ylab = "Luminescence (AU)", T.col = "blue", T.lwd = 2, main = ""),
+ cex.lab = 1.3, col = "gray60")

R> lines(out.EP1$trend.est$T, col = "black", lwd = 2, 1ty = 2)

R> lines(out.EP4$trend.est$T, col = "red", 1ty = 3, lwd = 2)

R> lines(out.LA10$trend.est$T, col = "green", 1ty = 4, lwd = 2)

24 TrendLSW: Trend Locally Stationary Wavelet Processes in R

0.5
1

Z axis acceleration (m/sz)
5

S :

! .

o : 5

\—i’ 1 g li

| . , . X

T} ‘ ‘ ‘ ‘

F|i7 \ T * | T : \: \ : :\
0 1000 2000 3000 4000 5000 6000

Time

Figure 12: Z-axis acceleration time series. Data between blue solid vertical lines indicates
when the participant was walking downstairs, data between red dashed vertical lines indicates
walking upstairs.

R> legend(10, 85000, c("EP10", "EP1", "EP4", "LA10"),
+ 1ty c(1, 2, 3, 4), 1wd = c(2, 2, 2, 2),
+ col = c("blue", "black", "red", '"green"), bty = "n", cex = 1.2)

We compare the fits produced by the Daubechies Extremal Phase (EP) wavelets with 1,
4, and 10 vanishing moments, as well as the Daubechies Least Asymmetric (LA) Wavelet
with 10 vanishing moments. The fits for the EP1 and EP4 wavelets appear to be noticeably
worse than those for the EP10 and LA10, which show better adaptivity to the data and are
almost identical. Heuristically, we can also compute the root mean squared error (RMSE) of
the trend estimates, which identify the EP10 and LA10 wavelets as being indistinguishable
(RMSEs of 3682.85 and 3682.42 respectively), and superior to the EP1 and EP4 wavelets
(RMSEs of 4062.61 and 3990.25 respectively). The code for this is given below.

R> n <- length(celegansbio)

R> trends <- 1ist(EP1 = out.EP1$trend.est$T,EP4 = out.EP4$trend.est$T,
+ EP10 = out$trend.est$T, LA10 = out.LA10$trend.est$T)

R> trends.rmse <- lapply(trends, function(y) {

+ sqrt (sum((y - celegansbio) ~ 2) / n) })

6.2. Accelerometer data

Accelerometers are used in a variety of fields including engineering, health, and marketing.
Here we consider a dataset obtained from the UCI data repository (Kelly, Longjohn, and
Nottingham 2024) based on accelerometer readings from a smartphone (Reyes-Ortiz, Oneto,
Sama, Parra, and Anguita 2016) during an experiment on daily living activities. Specifically,
we analyze a section of the z-axis time series of length n = 6000 from experiment 3 of
user 2, which we denote z.acc. During this time period, the participant performed two
activities several times; walking upstairs and walking downstairs. The data are shown in
Figure 12, where data between blue solid vertical lines indicate when the participant was

Journal of Statistical Software 25

Spectral Estimate

1 1 1 1 1 1
| | | | | |
o _| ' | | | | |
— ' ' ' ' ' '
_]]]]]]
1 1 1 1 1 1
‘:1_ | | | | | |
_ | | | | I I
o - I I I | | |
| 1 1 1 1
(] 0 . . r T T
T~ ea A e v RPN
B o —= A———_ —— .
0 - -_— et jcothn . ccmund e | deulie.
< 4 ! : — o %
® - ! . . ! - ! '
1 1 1 1 1 1
poan w VS J—
N i I | \ . \
= 1 -~ : 1 1 1 1
1 1 1 1 1 1
I L — L = L —
0 2048 4096 6144

Time

Figure 13: Spectral estimate for the accelerometer data from Figure 12. Each level is scaled
individually.

o
N
S
o
o
~
N O
UL? o
o
o
S 4
o
T I I I I I I
0 1000 2000 3000 4000 5000 6000
Time

Figure 14: Spectral estimate at scale j = 5 for the accelerometer data from Figure 12. Periods
of walking upstairs shown in blue, and periods of walking downstairs shown in red.

walking downstairs, and data between red dashed vertical lines indicate walking upstairs.
The data show a gradual downward trend, and periods of activity correspond to periods of
greater variability. The accelerometer time series is available as z.acc within the TrendLSW
package, and the associated activity labels (along with their start and end times) are available
as z.labels.

We focus on investigating what insights the spectral estimate reveals about the activity of the
participant. The following code performs TLSW estimation on z.acc and plots the result,
where we have changed the default spectral smoothing to use the Epanechnikov kernel with
a bin width of 150, corresponding to a time period of 3 seconds:

26 TrendLSW: Trend Locally Stationary Wavelet Processes in R

R> data("z.acc")

R> data("z.labels")

R> z.acc.TLSW <- TLSW(z.acc, S.smooth.type = "epan", S.binwidth = 150)
R> plot(z.acc.TLSW, plot.type = "spec",

+ spec.plot.args = list(scaling = "by.level"))

Figure 13 displays the spectral estimate of the time series, which has been scaled individually
at each level. The spectral estimate closely correlates with the participant’s activities. To
highlight this, Figure 14 shows the spectral estimate at scale j = 5 only, with periods of walk-
ing downstairs and walking upstairs superimposed onto the plot in blue and red respectively.
We see that the periods of activity give rise to increased power in Ss(z).

7. Concluding remarks

Time series data with both time-varying mean and dependence structure are increasingly
commonplace, and thus there is a growing need for implementations of statistically justified
models and inference tools so that practitioners can derive principled insight from scientific
data. This article introduces the TrendLSW package in R to address this gap in currently
available software, implementing recent methods for modeling nonstationary time series. The
functionality in the package allows users to simulate time series with first and second order
nonstationarity, as well as estimate relevant quantities of interest, such as the trend and
wavelet spectrum associated to time series.

Whilst the TrendLSW package incorporates implementations of flexible estimation methods
for the recent Trend-LSW model for users familiar with locally stationary wavelet processes,
the package is designed with a broad end-user base in mind, and hence we provide an auto-
matic way of analysing nonstationary time series data, with few tuning parameters needed to
be specified. Trend and dependence time series components are easily estimated and subse-
quently visualized, together with quantification of estimation uncertainty. We have presented
several case studies from different fields to demonstrate the package functionality, and hope
the package will provide practical tools for data analysis in a wide range of scientific and
industrial settings.

Future development of TrendLSW will include adding further functionality including a predict
method for TLSW objects.

Acknowledgments

Thanks to Alexandre Benedetto for collecting the data from the C. Elegans experiment and
allowing us to provide it as open-source data within the package.

References

Antoniadis A, Bigot J, Sapatinas T (2001). “Wavelet Estimators in Nonparametric Regression:
A Comparative Simulation Study.” Journal of Statistical Software, 6, 1-83. doi:10.18637/
jss.v006.106.

https://doi.org/10.18637/jss.v006.i06
https://doi.org/10.18637/jss.v006.i06

Journal of Statistical Software 27

Arnold TB, Tibshirani RJ (2022). genlasso: Path Algorithm for Generalized Lasso Problems.
doi:10.32614/CRAN.package.genlasso. R package version 1.6.1.

Baldock SJ, Kevin P, Harper GR, Griffin R, Genedy HH, Fong MJ, Zhao Z, Zhang Z, Shen
Y, Lin H, Au C, Martin JR, Ashton MD, Haskew MJ, Stewart B, Efremova O, Esfahani
RN, Emsley HCA, Appleby JB, Cheneler D, Cummings DM, Benedetto A, Hardy JG
(2023). “Creating 3D Objects with Integrated Electronics via Multiphoton Fabrication In
Vitro and In Vivo.” Advanced Materials Technologies, 8(11), 2201274. doi:10.1002/admt .
202201274.

Beaulieu C, Killick R (2018). “Distinguishing Trends and Shifts from Memory in Climate
Data.” Journal of Climate, 31(23), 9519-9543. doi:10.1175/jcli-d-17-0863.1.

Cardinali A, Nason G (2022). LSWPIib: Simulation and Spectral Estimation of Locally
Stationary Wavelet Packet Processes. doi:10.32614/CRAN.package.LSWP1ib. R package
version 0.1.0.

Craigmile PF, Guttorp P, Percival DB (2004). “Trend Assessment in a Long Memory De-
pendence Model Using the Discrete Wavelet Transform.” Environmetrics, 15(4), 313-335.
doi:10.1002/env.642.

Dahlhaus R (1997). “Fitting Time Series Models to Nonstationary Processes.” The Annals
of Statistics, 25(1), 1-37. doi:10.1214/a0s/1034276620.

Dahlhaus R (2012). “Locally Stationary Processes.” In Handbook of Statistics, volume 30,
pp. 351-413. Elsevier.

Daubechies I (1992). Ten Lectures on Wavelets. STAM.

Di Narzo AF, Aznarte JL, Stigler M (2024). tsDyn: Time Series Analysis Based on Dynamical
Systems Theory. doi:10.32614/CRAN.package.tsDyn. R package version 11.0.5.2.

Friedrich M, Smeekes S, Urbain JP (2020). “Autoregressive Wild Bootstrap Inference for Non-
parametric Trends.” Journal of Econometrics, 214(1), 81-109. doi:10.1016/j.jeconon.
2019.05.006.

Hahm JH, Jeong C, Lee W, Koo HJ, Kim S, Hwang D, Nam HG (2020). “A Cellular Surveil-
lance and Defense System That Delays Aging Phenotypes in C. Elegans.” Aging, 12(9),
8202-8220. doi:10.18632/aging.103134.

Hastie T (2025). gam: Generalized Additive Models. doi:10.32614/CRAN.package.gam.
R package version 1.22-7.

Jiang F, Zhao Z, Shao X (2023). “Time Series Analysis of COVID-19 Infection Curve:
A Change-Point Perspective.” Journal of Econometrics, 232(1), 1-17. doi:10.1016/j.
jeconom.2020.07.039.

Keele L, Kelly NJ (2006). “Dynamic Models for Dynamic Theories: The Ins and Outs
of Lagged Dependent Variables.” Political Analysis, 14(2), 186—205. doi:10.1093/pan/
mpj006.

https://doi.org/10.32614/CRAN.package.genlasso
https://doi.org/10.1002/admt.202201274
https://doi.org/10.1002/admt.202201274
https://doi.org/10.1175/jcli-d-17-0863.1
https://doi.org/10.32614/CRAN.package.LSWPlib
https://doi.org/10.1002/env.642
https://doi.org/10.1214/aos/1034276620
https://doi.org/10.32614/CRAN.package.tsDyn
https://doi.org/10.1016/j.jeconom.2019.05.006
https://doi.org/10.1016/j.jeconom.2019.05.006
https://doi.org/10.18632/aging.103134
https://doi.org/10.32614/CRAN.package.gam
https://doi.org/10.1016/j.jeconom.2020.07.039
https://doi.org/10.1016/j.jeconom.2020.07.039
https://doi.org/10.1093/pan/mpj006
https://doi.org/10.1093/pan/mpj006

28 TrendLSW: Trend Locally Stationary Wavelet Processes in R

Kelly M, Longjohn R, Nottingham K (2024). “The UCI Machine Learning Repository.” URL
https://archive.ics.uci.edu/.

Kilian L, Liitkepohl H (2017). Structural Vector Autoregressive Analysis. Cambridge Univer-
sity Press.

Lagido C, Pettitt J, Flett A, Glover LA (2008). “Bridging the Phenotypic Gap: Real-Time
Assessment of Mitochondrial Function and Metabolism of the Nematode Caenorhabditis
Elegant.” BMC' Physiology, 8(7). doi:10.1186/1472-6793-8-7.

Lees JM, Harris D (2024). RSEIS: Seismic Time Series Analysis Tools. doi:10.32614/CRAN.
package .RSEIS. R package version 4.2-4.

Lyubchich V, Gel YR, Vishwakarma S (2025). funtimes: Functions for Time Series Analysis.
doi:10.32614/CRAN.package.funtimes. R package version 10.0.

McGonigle ET, Killick R, Nunes MA (2021). “Detecting Changes in Mean in the Presence of
Time-Varying Autocovariance.” Stat, 10(1), e351. doi:10.1002/sta4.351.

McGonigle ET, Killick R, Nunes MA (2022a). “Modelling Time-Varying First and Second-
Order Structure of Time Series via Wavelets and Differencing.” Electronic Journal of Statis-
tics, 16(2), 4398-4448. doi:10.1214/22-ejs2044.

McGonigle ET, Killick R, Nunes MA (2022b). “Trend Locally Stationary Wavelet Processes.”
Journal of Time Series Analysis, 43(6), 895-917. doi:10.1111/jtsa.12643.

McGonigle ET, Killick R, Nunes MA (2026). TrendLSW: Wavelet Methods for Analysing
Locally Stationary Time Series. doi:10.32614/CRAN.package.TrendLSW. R package ver-
sion 1.0.6.

Milborrow S, Hastie T, Tibshirani R (2024). earth: Multivariate Adaptive Regression Splines.
doi:10.32614/CRAN.package.earth. R package version 5.3.4.

Nason G (2008). Wavelet Methods in Statistics with R. Springer-Verlag. doi:10.1007/
978-0-387-75961-6.

Nason G (2024). wavethresh: Wavelets Statistics and Transforms. doi:10.32614/CRAN.
package.wavethresh. R package version 4.7-3.

Nason G (2025). locits: Tests of Stationarity and Localized Autocovariance. doi:10.32614/
CRAN.package.locits. R package version 1.7-8.

Nason GP, von Sachs R, Kroisandt G (2000). “Wavelet Processes and Adaptive Estimation
of the Evolutionary Wavelet Spectrum.” Journal of the Royal Statistical Society B, 62(2),
271-292. doi:10.1111/1467-9868.00231.

Olea R, Palma W, Rubio P (2021). LSTS: Locally Stationary Time Series. doi:10.32614/
CRAN.package.LSTS. R package version 2.1.

Olmedo M, Geibel M, Artal-Sanz M, Merrow M (2015). “A High-Throughput Method for
the Analysis of Larval Developmental Phenotypes in Caenorhabditis Elegans.” Genetics,
201(2), 443-448. doi:10.1534/genetics.115.179242.

https://archive.ics.uci.edu/
https://doi.org/10.1186/1472-6793-8-7
https://doi.org/10.32614/CRAN.package.RSEIS
https://doi.org/10.32614/CRAN.package.RSEIS
https://doi.org/10.32614/CRAN.package.funtimes
https://doi.org/10.1002/sta4.351
https://doi.org/10.1214/22-ejs2044
https://doi.org/10.1111/jtsa.12643
https://doi.org/10.32614/CRAN.package.TrendLSW
https://doi.org/10.32614/CRAN.package.earth
https://doi.org/10.1007/978-0-387-75961-6
https://doi.org/10.1007/978-0-387-75961-6
https://doi.org/10.32614/CRAN.package.wavethresh
https://doi.org/10.32614/CRAN.package.wavethresh
https://doi.org/10.32614/CRAN.package.locits
https://doi.org/10.32614/CRAN.package.locits
https://doi.org/10.1111/1467-9868.00231
https://doi.org/10.32614/CRAN.package.LSTS
https://doi.org/10.32614/CRAN.package.LSTS
https://doi.org/10.1534/genetics.115.179242

Journal of Statistical Software 29

Ombao H, Raz J, von Sachs R, Guo W (2002). “The SLEX Model of a Non-Stationary
Random Process.” Annals of the Institute of Statistical Mathematics, 54(1), 171-200. doi:
10.1023/a:1016130108440.

O’Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC (2014). “C. Elegans in High-
Throughput Drug Discovery.” Advanced Drug Delivery Reviews, 69-70, 2477253. doi:
10.1016/j.addr.2013.12.001.

Percival DB, Walden AT (2006). Wavelet Methods for Time Series Analysis, volume 4. Cam-
bridge University Press.

Pohlert T (2023). trend: Non-Parametric Trend Tests and Change-Point Detection. doi:
10.32614/CRAN.package.Trend. R package version 1.1-6.

Priestley MB (1965). “Evolutionary Spectra and Non-Stationary Processes.” Journal of the
Royal Statistical Society B, pp. 204—237. doi:10.1111/3j.2517-6161.1965.tb01488.x.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://www.R-project.org/.

Reyes-Ortiz JL, Oneto L, Sama A, Parra X, Anguita D (2016). “Transition-Aware Human
Activity Recognition Using Smartphones.” Neurocomputing, 171, 754—767. doi:10.1016/
j.neucom.2015.07.085.

Roueff F, von Sachs R (2019). “Time-Frequency Analysis of Locally Stationary Hawkes
Processes.” Bernoulli, 25(2), 1355-1385. doi:10.3150/18-bej1023.

Stigler M (2019). “Nonlinear Time Series in R: Threshold Cointegration with tsDyn.” In
HD Vinod, CR Rao (eds.), Handbook of Statistics, Volume 41, volume 42, pp. 229-264.
Elsevier. doi:10.1016/bs.host.2019.01.008.

Taylor SAC, Park T, Eckley TA (2019). “Multivariate Locally Stationary Wavelet Analysis
With the mvLSW R Package.” Journal of Statistical Software, 90(11), 1-19. doi:10.
18637/jss.v090.111.

Van Bellegem S, Dahlhaus R (2006). “Semiparametric Estimation by Model Selection for
Locally Stationary Processes.” Journal of the Royal Statistical Society B, 68(5), 721-746.
doi:10.1111/3.1467-9868.2006.00564.x.

Vidakovic B (2009). Statistical Modeling by Wavelets. John Wiley & Sons.

Vogt M (2012). “Nonparametric Regression for Locally Stationary Time Series.” The Annals
of Statistics, 40(5), 2601-2633. doi:10.1214/12-20s1043.

von Sachs R, MacGibbon B (2000). “Non-Parametric Curve Estimation by Wavelet Thresh-
olding with Locally Stationary Errors.” Scandinavian Journal of Statistics, 27(3), 475-499.
doi:10.1111/1467-9469.00202.

Wood S (2025). mgev: Mized GAM Computation Vehicle with Automatic Smoothness Esti-
mation. doi:10.32614/CRAN.package.mgcv. R package version 1.9-4.

https://doi.org/10.1023/a:1016130108440
https://doi.org/10.1023/a:1016130108440
https://doi.org/10.1016/j.addr.2013.12.001
https://doi.org/10.1016/j.addr.2013.12.001
https://doi.org/10.32614/CRAN.package.Trend
https://doi.org/10.32614/CRAN.package.Trend
https://doi.org/10.1111/j.2517-6161.1965.tb01488.x
https://doi.org/10.32614/R.manuals
https://www.R-project.org/
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.3150/18-bej1023
https://doi.org/10.1016/bs.host.2019.01.008
https://doi.org/10.18637/jss.v090.i11
https://doi.org/10.18637/jss.v090.i11
https://doi.org/10.1111/j.1467-9868.2006.00564.x
https://doi.org/10.1214/12-aos1043
https://doi.org/10.1111/1467-9469.00202
https://doi.org/10.32614/CRAN.package.mgcv

30 TrendLSW: Trend Locally Stationary Wavelet Processes in R

Wu WB;, Zhao Z (2007). “Inference of Trends in Time Series.” Journal of the Royal Statistical
Society B, 69(3), 391-410. doi:10.1111/3j.1467-9868.2007.00594.x.

Zeileis A (2019). dynim: Dynamic Linear Regression. doi:10.32614/CRAN.package.dynlm.

R package version 0.3-6.

Zhang T, Wu WB (2011). “Testing Parametric Assumptions of Trends of a Nonstationary
Time Series.” Biometrika, 98(3), 599-614. doi:10.1093/biomet/asr017.

Zhou Z, Wu WB (2009). “Local Linear Quantile Estimation for Nonstationary Time Series.”
The Annals of Statistics, 37(5B), 2696-2729. doi:10.1214/08-a0s636.

Affiliation:

Euan T. McGonigle

School of Mathematical Sciences
University of Southampton
Southampton, United Kingdom
E-mail: e.t.mcgonigle@soton.ac.uk

Rebecca Killick

Department of Mathematics and Statistics
Lancaster University

Lancaster, United Kingdom

E-mail: r.killick@lancaster.ac.uk

Matthew A. Nunes

Department of Mathematical Sciences
University of Bath

Bath, United Kingdom

E-mail: m.a.nunes@bath.ac.uk

Journal of Statistical Software
published by the Foundation for Open Access Statistics

December 2025, Volume 115, Issue 10
d0i:10.18637/jss.v115.110

https://www. jstatsoft.org/
https://www.foastat.org/

Submitted: 2024-05-08
Accepted: 2024-11-01

https://doi.org/10.1111/j.1467-9868.2007.00594.x
https://doi.org/10.32614/CRAN.package.dynlm
https://doi.org/10.1093/biomet/asr017
https://doi.org/10.1214/08-aos636
mailto:e.t.mcgonigle@soton.ac.uk
mailto:r.killick@lancaster.ac.uk
mailto:m.a.nunes@bath.ac.uk
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v115.i10

	Introduction
	The Trend-LSW model
	Wavelets
	The TLSW process

	EWS estimation
	Direct estimation
	First-differenced estimation with modified correction factor
	EWS estimation using TLSW

	Trend estimation
	Linear wavelet thresholding estimator
	Nonlinear wavelet thresholding estimator
	Trend estimation using TLSW

	Trend and EWS worked example
	Making modifications to spectrum and trend estimation plots

	Data examples
	Bioluminescence of Caenorhabditis elegans
	Accelerometer data

	Concluding remarks

