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Abstract

Item response theory (IRT) provides a framework for modeling the responses given
to a test or questionnaire, which are assumed to depend on an underlying latent variable
and on some item parameters. Due to identifiability issues, when the parameters are
estimated separately on different datasets, the estimates of the item parameters and the
predicted values of the latent variable are not directly comparable. Equating is a statistical
procedure that can be used to convert these values to a common metric and to obtain
comparable test scores. The R package equateMultiple implements methods to link the
parameters estimated on many different datasets. After briefly reviewing the IRT models
and the equating methods, this article illustrates the use of the package.
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1. Introduction

In IRT, the parameters of the model are usually identified by fixing the mean and the variance
of the latent variable to zero and one. As a consequence, when the parameters are estimated
separately on different groups of examinees, the item parameter estimates are not directly
comparable. Separate estimation can be performed for various reasons. First, in educational
testing security reasons require to prepare various forms of a test, which can be administered
at the same time or in subsequent periods. Using all the data from previous administrations
to estimate the item parameters could be cumbersome or even unfeasible, since the number of
examinees and items grows with the number of administrations. Another reason to perform
separate estimation is testing for differential item functioning (DIF), which occurs when the
probability of giving a certain response to an item depends on characteristics of the subjects
other than the latent variable of interest (Magis, Béland, Tuerlinckx, and De Boeck 2010).
Hence, estimating the parameters separately on different groups of individuals can reveal
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differences in the item parameter estimates (Battauz 2019). Similarly, separate estimation
can be used to detect drifts of item parameters over time (Donoghue and Isham 1998; Battauz
2023). Whenever separate estimation is performed, to obtain values expressed on a common
metric, it is necessary to covert the item parameters through a linear transformation that
involves two unknown constants, called equating coefficients (Ogasawara 2001). The literature
provides various methods to estimate these coefficients and to obtain comparable test scores
(Kolen and Brennan 2014). While most of the literature focuses on the case of two separate
groups, some works considered the case of many groups. The first proposal was given in
Haberman (2009), who employed a regression model to estimate the equating coefficients.
This approach represents an extension of the mean-geometric mean method for two forms to
the case of multiple forms. Subsequently, Battauz (2017) extended other methods that were
used for two forms to handle many forms. More recently, Battauz and Ledncio (2023) proposed
a novel likelihood-based approach. The package equateMultiple (Battauz 2026) was originally
developed to implement the methods proposed in Haberman (2009) and Battauz (2017).
The latest versions of the package have included the likelihood-based method (Battauz and
Ledncio 2023), improving the computational time with respect to the performance declared
in the paper by employing C++ language. With the only exception of the R (R Core Team
2025) package sirt (Robitzsch 2025), which implements the method proposed by Haberman
(2009) in the linking.haberman function, the other R packages deal only with the case of
two forms to be equated. More specifically, the package plink (Weeks 2010) implements IRT-
based methods, kequate (Andersson, Branberg, and Wiberg 2013) applies the kernel method
of test equating, equateIRT (Battauz 2015), besides computing the equating coefficients for
pairs of forms, combines them to obtain the conversion through chains, while equate (Albano
2022) implements non-IRT methods. To the best of our knowledge, the non-R software that
implements test equating methods is available in the applications Equating Recipes (Brennan,
Wang, Kim, and Seol 2009), which provides a set of open-source functions to perform all types
of equating described by Kolen and Brennan (2014) and other equating methods for pairs of
forms, and IRTEQ (Han 2009), which employs IRT-based methods for two forms.

This article is organized as follows. Section 2 introduces the main IRT models for binary data
and shows how to fit them in R. To this end, a real dataset available in the equateMultiple
package is used. Section 3 briefly illustrates the IRT equating methods for multiple forms,
which are applied to the real dataset using the equateMultiple package. Further insights on
the identifiability issues and on the effect of composing forms of different items are provided
in Section 5 by means of simulated data. Finally, Section 6 concludes the paper.

2. IRT models for binary data

Let Y;; be the binary response of person 7 to item j. The equateMultiple package includes a
real dataset regarding five forms of a math test administered to different groups of students.
The following code loads the package and the data:

R> library("equateMultiple")
R> data("mathTest", package = "equateMultiple")

The dataset consists of a list of five data frames, each containing rows of responses from
individuals to various items, with the item labels as the column headers.
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R> head(mathTest[[1]])

MO110 MO111 MO101 MO102 M0103 MO104 M0105 MO106 MO107 M0O108 MO109

1 1 1 1 1 0 1 1 0 1 1 1
2 1 1 1 1 1 1 1 0 1 1 0
3 1 1 1 1 0 0 1 1 1 0 1
4 1 1 1 1 1 1 1 1 1 1 0
5 0 1 1 1 1 1 1 0 0 0 0
6 1 0 1 1 1 1 1 1 1 1 0

These data are frequently modeled using the three-parameter logistic (3PL) model, which
expresses the probability of a correct response as follows

exp{Da; (0 — b;)}
1+ exp{Da;(0 —b;)}’

P(Yi; = 1;0,a4,bj,¢;) = P(6;a;,b;,¢;) = ¢j + (1 —¢;) (1)

where 6 is the latent variable level, while a;, b; and c¢; are parameters related to the item.
More specifically, ¢; is commonly called the guessing parameter since it corresponds to the
lower asymptote of the function. When the guessing parameters are equal to zero, the model
reduces to the two-parameter logistic (2PL) model. The parameter a;, usually referred to
as the discrimination parameter, determines the steepness of the function. If set to 1, the
model results in the one-parameter logistic (1PL) model, also known as the Rasch model.
To identify the 2-3PL models it is necessary to impose two constrains, usually by setting the
mean of the latent variable to 0 and its variance to 1. For the Rasch model, one constrain
is sufficient, e.g. the mean of the latent variable equal to 0. If, in addition, the variance is
fixed at 1, it is possible to include a discrimination parameter constant across items, which
corresponds to the standard deviation of the latent variable. Various R packages can be used
to estimate these models, such as the packages TAM (Robitzsch, Kiefer, and Wu 2025), 1tm
(Rizopoulos 2006) or mirt (Chalmers 2012). Using mirt, the parameters of a 2PL model can
be estimated separately for each data frame as follows:

R> library("mirt")

R> mods_mirt <- list()

R> for (i in 1:5)

+ mods_mirt[[i]] <- mirt(mathTest[[i]], 1, itemtype = "2PL", SE = TRUE)

Note that SE is set to TRUE to obtain the estimated covariance matrix of the item parameters,
which is necessary later to obtain the standard errors of the quantities estimated in the
equating process. The 2PL model was chosen to fit these data because the guessing parameters
don’t need to be converted (Kolen and Brennan 2014, p. 178), so it fully shows the equating
methods and the conversion of the item parameters. Furthermore, fitting a 3PL model yields
convergence errors for some of these datasets.

In the mirt package, the parameters of the model are actually estimated using the following
parameterization

exp(Bij + B2;0)
1+ exp(f1) + Boj0)

P(Yij = 1;0,a;,bj,¢j) = ¢; + (1 — ¢j) (2)
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Furthermore, the guessing parameters are parameterized as follows:

__exp(By)
7 1+ exp(Bs)) )

So, the covariance matrix of the estimates obtained with mirt refers to the parameters (5,
B2 and B3;. The function modIRT of the equateIRT package can be used to extract the item
parameter estimates and their covariance matrix and to convert them to the parameterization
adopted by Equation 1

R> mods_extract <- modIRT(mods_mirt, display = FALSE)

The argument display is set to FALSE in this case to avoid long prints, though it is advisable
to leave it TRUE (the default) to observe the estimates and the standard errors. The output in
the object mods_extract is of class modIRT and it consists of a list with length equal to the
number of forms. Each element of this list contains a list with the item parameter estimates,
their covariance matrix and the number of parameters of the adopted model.

If the item parameters are estimated using external software, it is still possible to use the
modIRT function to build an object of class modIRT. In this case the inputs of the function
should be a list of item parameter estimates (argument coef) and a list of covariance matrices
(argument var). Attention should be paid to the parameterization of the item parameter
estimates, which should be specified using argument ltparam, which is TRUE if the difficulty
parameters are expressed as in Equation 2, and argument 1param, which is TRUE if the guessing
parameters are in the form of Equation 3. If the parameters are expressed as in Equation 1,
they should be both set to FALSE.

The estimation method commonly employed to estimate the parameters is the marginal maxi-
mum likelihood method (Bock and Aitkin 1981), which maximizes the marginal log-likelihood
function obtained by assuming a standard normal distribution for the latent variable and in-
tegrating it out. Hence, the latent variable is assumed to have zero mean and variance equal
to one in all the groups taking different forms, though the mean and the variance can vary
across groups. As a consequence, the item parameter estimates are not on the same scale, so
it is necessary to convert them to a common metric to obtain comparable values. This is the
first step of the equating process, also known as linking.

3. Equating multiple forms

3.1. The equating design

To link two forms administered to different groups of examinees, the forms must have some
items in common. This case is commonly referred to as the common-item nonequivalent
groups design (Kolen and Brennan 2014). In case of multiple forms, it is sufficient that all the
forms can be linked to the others through a path that connects them. This can be inspected
using the function linkp of the equateIRT package, which shows the number of items in
common between pairs of forms

R> linkage_plan <- linkp(mods_extract)
R> linkage_plan
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Figure 1: Linkage plan.

[,11 [,2]1 [,31 [,41 [,5]
1,1 11 0 0 3 5
[2,] 0o 11 0 2 1

[3,] 0 0 11 0 3
[4,] 3 2 0 11 0
(5,1 5 1 3 0 11

For example, Forms 1 and 4 have 3 items in common, while Form 1 and 3 do not share any
items. Forms 2 and 5 have one only item in common; however, they both present common
items with other forms. To estimate the equating coefficients, it is sufficient to have one
item in common between one form and all the others. However, it is advisable to have more
common items to reduce the random error in the estimation of the equating coefficients and
improve the stability of the results. The linkage plan can be represented using, for example,
the sna package (Butts 2008, 2024) for social network analysis

R> library("sna")

R> set.seed(6)

R> gplot(linkage_plan, displaylabels = TRUE, vertex.sides = 4,

+ vertex.cex = 3, vertex.rot = 45, usearrows = FALSE,

+ label.pos = 5, label.cex = 1, vertex.col = 0, edge.lwd = 0.2)

Figure 1 shows that all the forms can be connected to the others, though not all of them are
directly linked.

3.2. Equating methods for multiple forms

To introduce the methods proposed in the literature to estimate simultaneously the equating
coefficients that link all the forms, we denote the item parameters expressed on the scale of
the form chosen as base as aj and b;. Every parameter can be converted to the scale of the
base form using the following equations

* ajt
and
by =bj1Ar + By, (5)

where A; and By are the equating coefficients of form t.
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The first proposal is given in Haberman (2009), who employed Equations 4 and 5 to specify
the regression models
log ajt = log Ay + log aj + €%, (6)

and

Z;tht = —Bt + b;k + z’;‘?t, (7)
where €7, and 5?15 are error terms in the models that involve the discrimination and the
difficulty parameters, respectively. The estimation of the parameters by least squares provides
estimates of both the equating coefficients and the item parameters on a common metric,
exploiting all the items at the same time. Since this method, when applied to only two forms,
gives the same results as the mean-geometric mean method (Mislevy and Bock 1990), it was
referred to as the multiple mean-geometric mean (MM-GM) method in Battauz (2017). Such
paper provided extensions to the case of multiple forms of other methods already used for
two forms. In particular, the multiple mean-mean (MM-M) method generalized the mean-
mean method (Loyd and Hoover 1980) to the case of many forms and it requires to solve the
following equations

. T
A, = 23% T t=1,...,T (8)
Z‘ SEUjaJS
JEJt ZSGUj AS

where J; is the set of items administered in form ¢ and Uj is the set of forms that include
item j. After the coefficients A¢, t = 1,...,T, are estimated, the coefficients By, t = 1,...,T,
are computed as in the MM-GM method. The coefficients of the base form are fixed at 1 and
0.

The methods based on the item response function (given in Equation 1) for two forms are
the Haebara (Haebara 1980) and the Stocking-Lord (Stocking and Lord 1983) methods. The
multiple item response function (MIRF) and the the multiple test response function (MTRF)
methods generalize the Haebara and the Stocking-Lord methods to the case of multiple forms.
They are obtained by defining an estimator for the item parameters on a common metric

772%3 and B;:—Zl; A, + By), 9)

seU SGU

converting them to the scale of form ¢

and using these values in the item response function to define

= P(0;a%, z;;t, &jt), (11)
and
Pji = P(0;aj, bj, Cjr). (12)

The MIRF method requires to minimize the following function with respect to the equating

coefficients
Z/ Z Pji — jt)zh(g)d97 (13)

© jedy



Journal of Statistical Software 7

where h(:) is the density of a standard normal distribution. Instead, the MTRF method
minimizes )

T (e e]

S [ S Pe-pi) nioya. (14)
=177 \jeJ

A more detailed explanation of these methods and the derivation of the standard errors of

the estimates of the equating coefficients can be found in Battauz (2017).

In a subsequent paper, Battauz and Leoncio (2023) proposed a novel likelihood-based method
to estimate the equating coefficients in case of multiple forms. Differently from the previous
proposals, this approach accounts for the correlation of the item parameter estimates of the
same form and for their heteroskedasticity. Since the item parameters are estimated by
marginal maximum likelihood, they are consistent and asymptotically normal. So, assuming
a normal distribution for them

&t a; .
(&) ((2) ). 1= -

1
x
it is possible to define a profile likelihood function for the equating coefficients, treating a;}
and b} as nuisance parameters. Here, a; and b; denote the vectors of true item parameters in
form t, a; and b, are their estimates and a; and b; are the true parameters on the common
scale. The covariance matrix 3; is assumed to be known and equal to the one estimated
along with the item parameters. The maximization of the profile log-likelihood function
yields estimates of the equating coefficients. All these methods are implemented in the R
package equateMultiple.

where

a; = Ataf and bt = (bz( — Bt),

3.3. An application of the multiple equating methods to real data

The following example applies the MM-M method to the data introduced in Section 2:

R> eq_mm <- multiec(mods_extract)
R> summary (eq_mm)

Equating coefficients:
EQ Form Estimate StdErr

A T1 1.00000 0.00000
A T2 0.94704 0.19577
A T3 0.49900 0.14970
A T4 1.50535 0.21478
A T5 1.04509 0.14703
B Ti 0.00000 0.00000
B T2 -0.74833 0.21233
B T3 -0.36654 0.28395
B T4 -0.22767 0.17555
B T5 -0.85328 0.12708
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These coeflicients can be used to convert the item parameters to the scale of the base form
from the scale of the other forms, as described in Equations 4 and 5. Similarly, the latent
variable, which has zero mean and variance equal to 1 in all groups before conversion, can
be converted to the scale of the base form using the equation 6;A; + B;. Hence, after the
conversion, the standard deviation of the latent variable will be equal to A; and the mean
will be equal to B;. For instance, in this application, the variability of the latent variable in
the group of examinees that took Form 3 is smaller than the group that was administered
Form 1 (since As < 1), and the average value is lower (since Bs < 0). The labels T1, ..., T5
were assigned by default when running the modIRT function, and correspond to Forms 1 to 5.

To give another example, the following code employs the MIRF method and converts the
item parameters to the scale of Form 5:

R> eq_irf <- multiec(mods_extract, method = "irf", base = 5)
R> summary(eq_irf)

Equating coefficients:
EQ Form Estimate StdErr

A T1 1.07414 0.13311
A T2 0.95216 0.18741
A T3 0.44643 0.10133
A T4 1.70976 0.27645
A T5 1.00000 0.00000
B Ti 0.88384 0.14643
B T2 0.11032 0.17429
B T3 0.68281 0.14861
B T4 0.63805 0.17507
B T5 0.00000 0.00000

For the methods that require the optimization of an objective function, it is possible to specify
the initial values using argument start, either as a vector of values or as the output of the
multiec function previously called. Here is an example using the likelihood-based method
and the estimates obtained with MM-M as starting values:

R> eq_lik <- multiec(mods_extract, method = "lik", start = eq_mm,
+ obsinf = FALSE)
R> summary(eq_lik)

Equating coefficients:
EQ Form Estimate StdErr

A T1 1.00000 0.00000
A T2 0.89833 0.21352
A T3 0.41085 0.19520
A T4 1.55587 0.31619
A T5 0.91122 0.15105
B Ti 0.00000 0.00000
B T2 -0.67320 0.15599
B T3 -0.28756 0.15962
B T4 -0.22401 0.14758
B T5 -0.82224 0.10925
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The function item.common extracts the item parameters on the common scale, namely d;f

and l;;‘ The formula used to estimate the item parameters on the common scale depends on
the equating method used. In case of the MM-GM method, logaj and b} are estimated when
the models (6) and (7) are fitted, and a} is then obtained by taking the exponential. The

SEU; ajs
Zser AS
Using the MIRF or the MTRF methods the items on the common metric are estimated using
Equations 9. Finally, if the likelihood-based approach is followed, aj and b} are obtained
after the estimation of the equating coefficients from the maximum likelihood estimators. For
example, likelihood-based method leads to:

MM-M method estimates a; as , while b7 is estimated as in the MM-GM method.

R> items.com <- item.common(eq_lik)
R> items.com[1:4, ]

Item Estimate StdErr
1 Dscrmn.M000112 2.3465202 0.3632949
2 Dscrmn.M0095 0.6545708 0.1735455
3 Dscrmn.M0101 1.4180386 0.1750849
4 Dscrmn.M0102 1.3305638 0.1657058

R> items.com[42:45,]

Item Estimate StdErr
42 Dffclt.M0O00112 -1.979155 0.1407583
43 Dffclt.MO095 -1.450017 0.1460135
44 Dffclt.MO101 -1.557044 0.1132841
45 Dffclt.M0102 -1.034990 0.1020986

Here, the first four discrimination and difficulty parameters are printed.

The function eqc may be used to extract the equating coefficients. Additionally, a table con-
taining the item parameters for all administrations, as well as the item parameters converted
to the scale of the base form, can be obtained using the function itm.

3.4. Scoring

Once the equating coefficients are computed, it is possible to obtain the equated scores. The
main methods for this task are true score equating and observed score equating. True score
equating proceeds by finding the value of the latent variable 6 such that the expected value of
the number of correct responses, which is the score, is equal to the one observed on the base
form. Then the expected value of the score is computed for all other forms, using the item
parameters converted to the scale of the base form. Instead, the method of observed score
equating is based on computing the score of non-base forms at the same percentile of the score
of the base form. To this end, it is first necessary to compute the cumulative distribution
functions of the scores in each form using the item parameters converted to the common
metric. This requires to marginalize over the distribution of the latent variable, which can
be performed using the distribution of the latent variable of both the group administered the
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base form and the group administered the non-base form, leading to two distributions. Then,
a mixture of them is obtained with fixed weights. A common practice is to use continuous
approximations of the discrete score distribution, called continuization. The equateMultiple
package performs this step through linear interpolation. We refer to Kolen and Brennan
(2014, Chapter 6.5 and 6.6) for more details. The function score implements both methods,
adopting true score equating as default:

R> sc.eq.tse <- score(eq_lik)
The following scores are not attainable: O
R> round(sc.eq.tse, 3)[1:6,]

theta T1 T2.as.T1 StdErr_T2.as.T1 T3.as.T1 StdErr_T3.as.T1

1 -2.920 1 2.108 0.781 0.451 0.664

2 -2.173 2 3.629 0.911 1.177 1.149

3 -1.698 3 4.920 0.740 2.114 1.437

4 -1.321 4 5.955 0.517 3.300 1.506

5 -0.985 5 6.796 0.354 4.763 1.305

6 -0.660 6 7.517 0.273 6.488 0.871
T4.as.T1 StdErr_T4.as.T1 Tb.as.T1l StdErr_T5.as.T1

1 3.327 0.586 1.795 0.385

2 4.421 0.472 2.771 0.323

3 5.176 0.364 3.758 0.274

4 5.789 0.269 4.793 0.205

5 6.332 0.192 5.824 0.161

6 6.847 0.145 6.825 0.164

Here the output is shown for scores from 1 to 6 and it is rounded to three decimal places.
A score equal to zero cannot be attained since, even for extremely low values of ability, the
expected score in Form 1 is greater than zero. For example, a value of § equal to —0.985 leads
to an expected score of 5 in Form 1, and to an expected score of 6.796 in Form 2, showing that
Form 1 is more difficult at this level of ability. By default, all attainable scores are equated,
but it is possible to specify which ones to equate using the scores argument. The standard
errors of the equated scores are also computed, unless se is set to FALSE.

To perform observed score equating, the method argument may be set to OSE:

R> sc.eq.ose <- score(eq_lik, method = "OSE")
R> round(sc.eq.ose, 3)[1:7,]

T1 T2.as.T1 StdErr_T2.as.T1 T3.as.T1 StdErr_T3.as.Tl1l T4.as.T1

1 0 1.089 0.652 -0.294 0.319 1.735
2 1 2.566 0.532 0.539 0.758 3.077
3 2 3.783 0.599 1.506 1.097 4.023
4 3 4.871 0.517 2.684 1.212 4.789
5 4 5.823 0.394 4.076 1.079 5.491
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6 b5 6.677 0.299 5.559 0.675 6.070

7 6 7.462 0.321 7.040 0.555 6.703
StdErr_T4.as.T1 T6.as.T1 StdErr_T5.as.T1

1 0.342 0.737 0.217

2 0.473 1.828 0.254

3 0.381 2.835 0.236

4 0.264 3.827 0.202

5 0.261 4.831 0.163

6 0.170 5.834 0.143

7 0.143 6.828 0.157

It is possible to observe that, for example, a score of 6 in the first form is equivalent to a score
of 7.46 in the second and to a score of 7.04 in the third, and so on. This indicates that it is
more difficult to attain a score equal to 6 in the first form compared to the other two. By
default, the marginal distributions of the scores are obtained by Gauss-Hermite quadrature
with 30 points. The number of points can be specified by the nq argument. Alternatively to
Gaussian quadrature, it is possible to specify a vector of points using the theta argument
and the corresponding weights with the weights argument. Argument w is the weight given
to the group that was administered the base form in the computation of the mixture among
the groups that took the base and the non-base forms. By default, it is equal to 0.5.

4. Package overview

In this section, a comprehensive overview of the functionality of the equateMultiple package is
provided. The package focuses on performing equating of multiple forms of a test administered
to nonequivalent groups of subjects. Hence, a different dataset is available for each form. The
parameters of the IRT model need to be estimated previously for each dataset, using other
R packages or external software. Then, the parameters must be extracted and eventually
converted to the parameterization adopted in Equation 1. This can be accomplished using
the function modIRT, as explained is Section 2. At this point it is possible to estimate the
equating coefficients. After the estimation of the equating coefficient it is possible to obtain
equivalent scores. This process is shown in Figure 2.

In the equateMultiple package the equating coefficients for multiple forms can be estimated
using the function multiec, which is the main function of the package. The arguments of the
function are the following:

Estimation of the
equating
coefficients

Extraction and
eventual
convertion of the
item parameter
estimates

Item Parameter
estimation

Scoring
(eventual)

* Other IRT
packages or
external

software

 Function
score

* Function
multiec

* Function
modIRT

Figure 2: Steps of the equating process.



12

equateMultiple: An R Package to Equate Multiple Forms

mods: An object of class modIRT, obtained as output of the modIRT function.
base: The base form specified as an integer value. By default it is the first form.

method: The equating method for the estimation of the equating coefficients. The
default is mean-mean for the MM-M method, while it needs to be set to mean-gmean for
MM-GM, irf for MIRF, trf for MTRF or 1lik for the likelihood-based approach.

se: Logical value indicating if the standard errors of the equating coefficients and of
the item parameters on a common scale should be computed. The default is TRUE.

ng: Number of quadrature points used for the Gauss-Hermite quadrature to approxi-
mate the integrals for methods MIRF and MTRF. By default it is set to 30.

start: Initial values to be used in the optimization procedure for methods MIRF,
MTRF and the likelihood-based approach. It can be specified as the output of the
function multiec previously called, or as a vector containing T' — 1 numeric values for
the A; equating coefficients followed by other T'—1 values for the B; equating coefficients,
since the equating coefficients of the base form are fixed.

iter.max: Maximum number of iterations allowed in the optimization procedure.

obsinf: Logical value indicating if the observed information matrix should be used for
the computation of the standard errors in the likelihood-based method. The default is
TRUE.

trace: Logical value indicating if tracing information should be produced. The default
is TRUE.

The output of function multiec is an object of class mlteqc, which includes the following
components.

A: Vector of equating coefficients A;.
B: Vector of equating coeflicients B;.
se.A: Vector of standard errors of the equating coefficients A;.
se.B: Vector of standard errors of the equating coefficients B;.

varAB: Covariance matrix of the equating coeflicients.

*

as: Estimates of the discrimination parameters on a commons scale, namely a;.

bs: Estimates of the discrimination parameters on a commons scale, namely b7.

*

se.as: Standard errors of &j.

se.bs: Standard errors of l;;‘

tab: Data frame containing item parameter names (Item), item parameter estimates
across all the forms (e.g. T1, ..., T3), and item parameter estimates of all the forms
converted in the scale of the base form (e.g. T3.as.T1).
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varFull: List of covariance matrices of the item parameter estimates of every form.

partial: Partial derivatives of estimates of the equating coefficients with respect to the
item parameters.

itmp: Type of IRT model used, 1 for 1PL, 2 for 2PL and 3 for 3PL.
method: The equating method used.
basename: The name of the base form.

convergence: An integer code. 0 indicates successful convergence. Returned only with
MIRF, MTRF and the likelihood-based methods.

methods implemented for the class mtleqc are

print that prints essential information, as the method used.
summary that provides estimates and standard values.

plot that produces a plot of the item parameter estimates of one form against the base
form before and after conversion.

item.common that extracts the item parameter estimates on a common scale.
eqc that extracts the equating coefficients.
itm that extracts the item parameter estimates before and after conversion.

score that computes the equated scores.

5. An illustration with simulated data

Making use of simulated data, this section aims to provide a better understanding of the effect
of fixing the mean and the variance of the latent variable on the estimates and at showing
the capabilities of the methods implemented in the equateMultiple package.

Let the true equating coefficients be the following:

R> A <- seq(1, 2, length = 5)
R> B <- seq(0, 2, length = 5)
R> A

[1] 1.00 1.25 1.50 1.75 2.00
R> B

(1] 0.0 0.5 1.0 1.5 2.0

which are also the standard deviation and the mean of the abilities, generated as normally
distributed:
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R> set.seed(1)

R> n <- 100000

R> theta <- list()

R> for (i in 1:5) thetal[[i]] <- rnmorm(n, B[i], A[i])

A quite large number of subjects (i.e. 100,000) per form is employed to reduce the sample
variability of the estimates that are later obtained, so that it is possible to observe more
clearly the effect of the different parameters of the ability distributions. The discrimination
and difficulty parameters are generated as follows:

R> set.seed(1)
R> as <- runif(20, 0.7, 1.3)
R> bs <- sort(rnorm(20, 1, 1))

where the difficulty parameters are ordered. Then, a list of 5 datasets is generated from a 2PL
model. To disentangle the effect of different means and standard deviations of the abilities
from the effect of differences in the item parameters that compose the test forms, these test
forms are composed of the same 20 items.

R> gen.resp <- function(theta, a, b) {

+ lp <- a * (theta - b)

+ pr <- plogis(lp)

+ rn <- runif (length(theta))

+ (pr > rn) * 1

+ 7}

R> itms <- paste("I", formatC(1:20, width = 2, format = "d", flag = "0"),
+ sep = "")

R> set.seed(1)

R> resp <- 1list()

R> for (i in 1:5) {

+ resp_i <- matrix(NA, n, 20)
for (j in 1:20) resp_il, j] <- gen.resp(thetal[[il], as[jl, bs[jl)
colnames(resp_i) <- itms
resp[[i]] <- resp_i

}

+ + + +

Due to the increasing mean of the abilities, the scores obtained in subsequent forms tend to
be higher, as can be observed in the histograms in Figure 3 that represent the distribution of
the scores for each form:

R> row.scores <- lapply(resp, rowSums)

R> par(mfrow = c(1, 5), mar = c(2, 2, 2, 1))

R> for (i in 1:5) hist(row.scores[[i]], main = paste("Form", i),
+ xlab = "", col = 5)

The item parameters are estimated using the mirt package

R> mods_mirt_sim <- list()
R> for (i in 1:5) mods_mirt_sim[[i]] <- mirt(resp[[il], 1,
+ itemtype = "2PL", SE = TRUE)



Journal of Statistical Software 15

Form 1 Form 2 Form 3 Form 4 Form 5
. - 8 8 _ - 38 -
- 8 8 § -
o — —
§ S o o 7
@ © S + S =)
< < 8 —
— — — ©
o
o o o -
I o S 8
g - S s 8
N — — o
N
o o - o - o - o -
I T T T 1 I T T T 1 I T T T 1 I T T T 1 I T T T 1
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 3: Distribution of row scores across the forms.

and the modIRT function is again used to extract the item parameters and their covariance
matrix:

R> mods_extract_sim <- modIRT(mods_mirt_sim, display = FALSE)
The estimation of the equating coefficients is here performed using the MIRF method

R> eq_irf_sim <- multiec(mods_extract_sim, method = "irf", se = TRUE)
R> summary(eq_irf_sim)

Equating coefficients:
EQ Form Estimate StdErr

A T1 1.00000 0.0000000
A T2 1.24391 0.0054581
A T3 1.48863 0.0064841
A T4 1.74392 0.0076522
A T5 1.99551 0.0088832
B Ti 0.00000 0.0000000
B T2 0.50260 0.0058033
B T3 0.99824 0.0068284
B T4 1.49458 0.0082097
B T5 1.99465 0.0098106

It is possible to observe that the estimated equating coefficients are very close to the true ones,
due to the large samples employed to estimate the item parameters. We can now compare
the item parameter estimates before and after the conversion. To this end, the plot function
produces a scatter plot of the difficulty and discrimination parameter estimates of a specified
form against the corresponding estimates of the base form, for the items in common between
the two forms. In the following, Form 5 is selected by name, though it is possible to select
the form by an integer value:

R> par(mfrow = c(2, 2))
R> plot(eq_irf_sim, form = "T5")

It is possible to observe in Figure 4 that the estimates of the difficulty parameters are lower in
Form 5 than in Form 1, due to the higher average ability of the examinees who took Form 5,
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Figure 4: Comparison of item parameter estimates before and after conversion.

which makes seem the items easier. They are also shrunk, due to the higher variability of
the abilities. Instead, the discrimination parameters are amplified in Form 5, because of the
larger variability of the abilities. Once the parameters are converted, they are very close to
the bisecting line.

Since the forms are composed of the same items, the scores here are already comparable.
In fact, the equated scores (obtained by applying true score equating) show that there are
substantially no differences across the test forms:

R> sc.eq.tse.sim <- score(eq_irf_sim)
The following scores are not attainable: 0O
R> round(sc.eq.tse.sim, 3)[1:6,]

theta T1 T2.as.T1 StdErr_T2.as.T1 T3.as.T1 StdErr_T3.as.T1

1 -2.425 1 1.002 0.007 1.014 0.007
2 -1.532 2 2.000 0.005 2.009 0.006
3 -0.966 3 2.999 0.003 3.002 0.004
4 -0.536 4 3.999 0.003 3.997 0.003
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008

.006
.004
.004
.004

5-0.182 5 5.000 0.005 4.994
6 0.125 6 6.002 0.005 5.992
T4.as.T1 StdErr_T4.as.T1 Ts.as.T1 StdErr_T5.as.T1

1 1.003 0.007 1.013

2 2.001 0.006 2.007 0

3 2.999 0.004 2.999 0

4 3.998 0.004 3.995 0

5 4.999 0.004 4.994 0

6 6.000 0.005 5.995 0

.005
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A score equal to zero is not attainable for these data with true score equating, since the
expected score is higher than zero even for extremely low values of the ability. Observed

score equating is not performed since it gives very similar results.

Computing the equivalent scores is actually meaningful when the forms are not composed of
the same items. Hence, the data are now modified by deleting the second half of the items
in Form 1 and the first half in Form 5. Since the difficulties were ordered, Form 1 is now
composed of the easiest items, while Form 5 is composed of the more difficult ones. Note also
that these forms do not have items in common, so the methods developed for two test forms

cannot be applied, while the multiple equating methods permit to link them.

R> resp[[1]] <- resp[[1]1][, 1:10]
R> resp[[5]] <- resp[[5]][, 11:20]

The 2PL model is fitted on the modified datasets, and the item parameters are extracted

R> for (i in c(1, 5))

+

mods_mirt_sim[[i]] <- mirt(resp[[i]], 1, itemtype = "2PL", SE = TRUE)

R> mods_extract_sim <- modIRT(mods_mirt_sim, display = FALSE)

The equating coefficients, which depend on the distribution of the abilities, are substantially
unchanged

R> eq_irf_sim <- multiec(mods_extract_sim, method = "irf", se
R> summary(eq_irf_sim)

Equating coefficients:
EQ Form Estimate

A

0w wwesr=>= >

T1
T2
T3
T4
T5
T1
T2
T3
T4
T5

1.

00000

1.24544
1.49046
1.74600
1.98875
0.
0
1
1
2

00000

.50408
.00044
.49744
.00075

StdErr

0.0000000
0.0061978
0.0074040
0.0087616
0.0112424
0.
0
0
0
0

0000000

.0061408
.0074075
.0090994
.0113124
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while the equated scores show that the forms now have different difficulties

R> sc.eq.tse.sim <- score(eq_irf_sim)
The following scores are not attainable: O
R> round(sc.eq.tse.sim, 3)

theta T1 T2.as.T1 StdErr_T2.as.T1 T3.as.T1 StdErr_T3.as.T1

1 -2.196 1 1.204 0.007 1.216 0.007

2 -1.236 2 2.482 0.004 2.489 0.005

3 -0.595 3 3.848 0.005 3.846 0.005

4 -0.081 4 5.314 0.006 5.306 0.006

5 0.376 5 6.903 0.007 6.891 0.007

6 0.817 6 8.657 0.007 8.644 0.007

7 1.283 7 10.648 0.007 10.638 0.007

8 1.841 8 13.017 0.011 13.014 0.011

9 2.680 9 16.024 0.017 16.034 0.016

10 48.358 10 20.000 0.000 20.000 0.000
T4.as.T1 StdErr_T4.as.T1 Ts5.as.T1 StdErr_Th5.as.T1

1 1.205 0.007 0.203 0.002

2 2.483 0.005 0.482 0.003

3 3.847 0.005 0.847 0.003

4 5.312 0.007 1.312 0.004

5 6.900 0.007 1.901 0.004

6 8.653 0.007 2.654 0.005

7 10.646 0.007 3.646 0.006

8 13.017 0.011 5.016 0.008

9 16.028 0.016 7.030 0.013

10 20.000 0.000 10.000 0.000

A score equal to 6 on the first form (which includes only the 10 easiest items) is equivalent to
a score of about 8.6 on Forms 2, 3 and 4 (that include all 20 items) and to a score of about 2.6
on Form 10 (composed of the 10 more difficult items). In other words, a person who scored
6 in Form 1 is expected to score 2.6 in Form 5, due to the higher difficulty of the last form.

6. Conclusions

Although testing programs develop several forms of a test, whose scores need to be compara-
ble, most of the IRT equating methods proposed in the literature deal with the case of two
forms. Some recent works proposed methods to equate a large number of test forms. The
equateMultiple package implements them, thus making accessible the use of such methods to
researchers and practitioners. This paper provides a brief review of the equating methods for
multiple forms and shows how the package can be used to apply them to a real dataset. The
effect of different ability levels across groups of examinees on the estimation of the item pa-
rameters was further inspected employing simulated data. The simulated data were also used
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to show the effect of composing forms of different items. This paper showed the use of the
equateMultiple package to adjust for such effects and to obtain comparable item parameter
estimates and comparable scores, even when two forms do not share any items.

The equateMultiple package implements the methodology to equate multiple forms that was
developed only for the case of unidimensional models for binary items. Hence, the extension
of the methods to polytomous items or multidimensional models remains a subject for future
research.
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